Application Of Wasps’ Defensins As Anti-Fungal Therapeutic Molecules: An In Silico Comparative Study
DOI:
https://doi.org/10.53555/jaz.v45i6.5003Keywords:
Wasp, Defensin, in silico, Docking, Anti-fungalAbstract
Animal peptide toxins as part of chemical arsenal for predation and/or protection that can safeguard host from pathogenic infections. Hymenopterans generate toxic bactericidal or bacteriostatic molecules, called defensins are small multifunctional, linear, polycationic peptides causing pain, have antimicrobial effects. Defensins are active against gram-positive, gram-negative bacteria and fungi. The present in silico study aims to predict the physicochemical attributes like molecular weight, theoretical pI, amino acid composition, extinction co-efficient, estimated half-life, instability index, aliphatic index and grand average of hydropathy (gravy) of 09 different wasps’ defensins using Expasy Protparam tool. The secondary structures of the toxins were predicted using psi-Blast-based PSIPRED, SOPMA tools revealing % α helix, extended β strand, random coil and ambiguous state reflecting a comparative physico-chemical parameters of these defensins. 3D Homology modelling of these toxins was accomplished through Swiss-model webserver and validated through ProSA-web, QMean4 determining Z score,PROCHEK establishing the 3D models of these defensins. Use of InterPro, CDD, ToxDL, PrDOS software predicted protein family, conserved domain, protein toxicity, protein disorder respectively. CYSCON and CYSPRED tools predicted cysteine-cysteine bonds. Docking of the nine (09) wasps’ defensins individually with fungal cellwall component 1,4 Beta-D-Glucan was done by DockThor webserver resulting negative affinity scores refleting strong binding between the defensins and 1,4 beta-D-Glucan indicating that the mentioned wasps’ defensin molecules might be used as potential antifungal therapeutic molecules binding to 1, 4 Beta-D-Glucan indicating an avenue to antifungal drug discovery.
Downloads
References
1. Ye, J., H. Zhao, H. Wang, J. Bian & R. Zheng, 2010. A defensin antimicrobial peptide from the venoms of Nasonia vitripennis. Toxicon,56 (1):101-106.
2. Cociancich S, O.A. Ghazi, C. Hetru, A. Jules, S.N. Hoffmann & L.Letelliers, 1993. Insect Defensin, an Inducible Antibacterial Peptide, Voltage-dependent Channels in Micrococcus luteus. The Journal of Biochemistry, 19239-19245.
3. Bulet, P., C. Hetru, D. Jean-Luc & D. Hoffmann, 1999. Antimicrobial peptides in insects, structure and function. Developmental & Comparative Immunology,23(4–5):329-344.
4. Palma, M.S., 2011. Peptides as toxins/defensins. Amino Acids, 40:1-4.
5. Singh, S.S., P. Singh, P. Kashyap, S.M.Singh & S. Ali, 2021. Promising role of defensins peptides as therapeutics to combat against viral infection. Microbial Pathogenesis, 155: 104930.
6. Casteels-Josson, K., W. Zhang, T. Capaci, P. Casteels & P. Tempst, 1994. Acute transcriptional response of the honey bees peptide-antibiotics gene repertoire, required posttranslational conversion of the precursor structures. J. Biol. Chem, 269: 28569-28575.
7. Bulet, P. & R. Stocklin,2005. Insect antimicrobial peptides: structure, properties and gene regulation. Protein & Peptide Letters,12: 3-11.
8. Mandrioli, M., S. Bugli, S. Saltini, S. Genedani & E. Ottaviani,2003. Molecular characterization of a defensin in the IZD-MB-0503 cell line derived from immunocytes of the insect Mamestra brassicae (Lepidoptera). Biology of the Cell, 95: 53-57.
9. Wang, Z., S.M. Zhao, W.Q. Bian, G. Yè & X. Chen,2013. Identification and characterization of defensin genes from the endoparasitoid wasp Cotesia vestalis (Hymenoptera: Braconidae). Journal of insect physiology, 59 (11): 1095-103.
10. Mohammad, R.F.,2015. ‘In silico structural analysis, physicochemical characterization and homology modeling of arabidopsis thaliana Na+/H+ exchanger 1 (ATNHX1) protein. B.S. Thesis. BRAC University, p.96.
11. Thevissen, K., H.H. Kristensen, B.P. Thomma, B.P. Cammue & I.E. François, 2007. Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today,12(21-22):966-71.
12. Garcia-Rubio,R., H.C. de Oliveira, J. Rivera & N. Trevijano-Contador,2020. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front Microbiol., 10: 2993,
13. Buda, De Cesare G., S.A. Cristy, D.A. Garsin & M.C. Lorenz,2020. Antimicrobial Peptides: a New Frontier in Antifungal Therapy. mBio. ,11(6): e02123-20.
14. dos Santos, K.B., I.A. Guedes, A.L.M. Karl & L. Dardenne,2020. Highly Flexible Ligand Docking: Benchmarking of the DockThor Program on the LEADS-PEP Protein-peptide Dataset. J. Chem. Inf. Model., 60(2): 667–683.
15. de Magalhães, C.S., M. Almeida, H.J.C. Barbosa & L.E. Dardenne,2014 . A dynamic niching genetic algorithm strategy for docking highly flexible ligands. Information Sciences ,289: 206–224.
16. Guedes, I.A., A.M.S. Barreto, D. Marinho, E. Krempser, M.A. Kuenemann & O. Sperandio, et al,2021. New Machine Learning and Physics-Based Scoring Functions for Drug Discovery. Sci Rep., 11(3198).
17. Santos Ricardo, N., L.G.L. Ferreira & D.A. Andricopulo,2018. Practices in Molecular Docking and Structure-Based Virtual Screening. Methods in molecular biology, 1762:31-50.
18. Gasteiger, E., A. Gattiker, C. Hoogland, I. Ivanyi, R.D. Appel & A. Bairoch,2003. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. ,31:3784-3788.
19. 19.Gasteiger, E., C. Hoogland, A. Gattiker, S. Duvaud, M.R. Wilkins, R.D. Appel & A. Bairoch,2005. Protein Identification and Analysis Tools on the ExPASy Server. In: Walker JM, editor: The Proteomics Protocols Handbook, Humana Press, p.571-607.
20. Moffat, L. & D.T. Jones,2021. Increasing the Accuracy of Single Sequence Prediction Methods Using a Deep Semi-Supervised Learning Framework. Bioinformatics,37(21):3744–51.
21. Geourjon, C. & G. Deléage,1995. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics,11: 681- 684.
22. Waterhouse, A., M. Bertoni, S. Bienert, G. Studer, G. Tauriello & R. Gumienny, et al.,2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res., 46: W296-W303.
23. Wiederstein, S.,2007. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research,35: W407-W410.
24. Benkert, P., M. Biasini & T. Schwede,2011. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 27: 343-350.
25. Jain, C.K., M. Gupta, Y. Prasad, G. Wadhwa & S. Sharma,2014. Homology modeling and protein engineering of alkane monooxygenase in Burkholderia thailandensis MSMB121: In silico insights. Journal of molecular modelling, 20: 2340.
26. Fariselli, P., P. Riccobelli & R. Casadio, 1999. The role of evolutionary information in predicting the disulfide bonding state of cysteines in proteins. Proteins,36: 340-346.
27. Yang, J., Bao-Ji. He, R. Jang, Y. Zhang & H. Shen, 2015. Accurate disulfide-bonding network predictions improve ab initio structure prediction of cysteine-rich proteins, Bioinformatics,31: 3773-3781.
28. Blum, M., H.Chang, S. Chuguransky, T. Grego, S. Kandasaamy & A. Mitchell, et al, 2020. The InterPro protein families and domains database: 20 years on. Nucleic Acids Research,49(D1): D344–D354.
29. Marchler-Bauer, A., J.B. Anderson, P.F. Cherukuri, C. DeWeese-Scott, L.Y. Geer & M. Gwadz, et al,2005. Nucleic Acids Res,33(Database issue).
30. Pan, X., J. Zuallaert, X. Wang, H.B. Shen, E.P. Campos & D.O. Marushchak, et al, 2021. ToxDL: deep learning using primary structure and domain embeddings for assessing protein toxicity. Bioinformatics,36(21):5159-5168.
31. Ishida,T. & K. Kinoshita, 2007. PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res,35(2): W460–W464.
32. National Center for Biotechnology Information. PubChem Compound Summary for CID 53477911,1,4-beta-D-Glucan. https://pubchem.ncbi.nlm.nih.gov/compound/1_4-beta-D-Glucan. Accessed Dec. 5, 2021.
33. Guedes, A.I., C.S. de Magalhães & L.E. Dardenne,2014. Receptor–ligand molecular docking, Biophysical Reviews,6(1): 75–87.
34. Kaur, A., P.K. Pati, A.M. Pati & A.K. Nagpal, 2020. Physico-chemical characterization and topological analysis of pathogenesis-related proteins from Arabidopsis thaliana and Oryza sativa using in-silico approaches. PLoS ONE,15(9): e0239836.
35. Panda, S. & G. Chandra, 2012. Physicochemical characterization and functional analysis of some snake venom toxin proteins and related non-toxin proteins of other chordates. Bioinformation,8(18):891–896.
36. Guruprasad, K., B.V.B. Reddy & M.W. Pandit, 1990. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, 4: 155–161.
37. Shen, C.H., 2019. Chapter 4 - Gene Expression: Translation of the Genetic Code, In: Shen CH, editor. Diagnostic Molecular Biology, Academic Press,87-116.
38. Gupte, T.M., M. Ritt & S. Sivaramakrishnan, 2021. Chapter Seven - ER/K-link—Leveraging a native protein linker to probe dynamic cellular interactions, In: Maarten M, editor. Methods in Enzymology, Academic Press, 64:173-208.
39. Robinson, S.W., A.M. Afzal & D.P. Leader, 2014. Chapter 13 - Bioinformatics: Concepts, Methods, and Data, In: Padmanabhan S, editor. Handbook of Pharmacogenomics and Stratified Medicine, Academic Press, 259-287.
40. Xue, B., A.K. Dunker & V.N. Uversky, 2010. Retro-MoRFs: identifying protein binding sites by normal and reverse alignment and intrinsic disorder prediction. Int J Mol Sci., 11(10):3725-3747.
41. Waterhouse, A., M. Bertoni, S. Bienert, G. Studer, G. Tauriello & R. Gumienny, 2018. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46: W296–W303.
42. Ramachandran, G.N., C. Ramakrishnan & V. Sasisekharan, 1963. Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology,7: 95–9.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Satarupa Das, Dr. Neeta Shweta Kerketta, Jayanta Sinha

This work is licensed under a Creative Commons Attribution 4.0 International License.