Teratogenic Effects of Di(2-Ethylhexyl) Phthalate (DEHP) on Zebrafish Embryos

Authors

  • Arundhati Dahiwal
  • Roshan C. D’Souza

DOI:

https://doi.org/10.53555/jaz.v45i4.4524

Keywords:

Di(2-ethylhexyl) phthalate (DEHP), Zebrafish embryos, mental health, Developmental toxicity, Edema

Abstract

Developmental toxicity studies help to understand the impact of a pollutant on this crucial phase of the living organisms which can affect their population dynamics. Zebrafish has become an ideal model for studying environmental and embryo toxicity. The present study was carried out using zebrafish embryos for assessing the environmental toxicity of Di(2-ethylhexyl) phthalate (DEHP) which is universally considered to be an omnipresent environmental contaminant as it is the most widely used plasticizer. The embryos were exposed to DEHP for a range of five concentrations of 0.2, 20, 80, 140 and 200 μg/L for the duration of 96 hours. The treatment resulted in increased mortality and decreased hatch rate, hatchability and heartrate. It also induced teratogenic endpoints like yolk sac edema, pericardial edema and spinal deformity in the embryos which increased in dose and time dependent manner.

Downloads

Download data is not yet available.

Author Biographies

Arundhati Dahiwal

Department of Zoology, Sophia College for Women (Auto.), Mumbai 400 026, M.S., India

Roshan C. D’Souza

Department of Zoology, Sophia College for Women (Auto.), Mumbai 400 026, M.S., India

References

Walsh Emma (2019). Date with Plastic: Plasticizers in our Cosmetics. Medium.

Bauer, M. J., & Herrmann, R. (1997). Estimation of the environmental contamination by phthalic acid esters leaching from household wastes. Science of the Total Environment, 208(1-2), 49-57.

Frederiksen, H., Skakkebaek, N. E., & Andersson, A. M. (2007). Metabolism of phthalates in humans. Molecular nutrition & food research, 51(7), 899-911.

Li, F., Liu, Y., Wang, D., Zhang, C., Yang, Z., Lu, S., & Wang, Y. (2018). Biodegradation of di-(2ethylhexyl) phthalate by a halotolerant consortium LF. PLoS One, 13(10), e0204324.

Rowdhwal, S. S. S. & Chen, J. (2018). Toxic Effects of Di-2-ethylhexyl Phthalate: An Overview. BioMed research international, 2018, 1750368.

Koo, H. J., & Lee, B. M. (2004). Estimated exposure to phthalates in cosmetics and risk assessment. Journal of Toxicology and Environmental Health, Part A, 67(23-24), 19011914.

Serrano, S. E., Braun, J., Trasande, L., Dills, R., & Sathyanarayana, S. (2014). Phthalates and diet: a review of the food monitoring and epidemiology data. Environmental health : a global access science source, 13(1), 43.

European Union. Article 59(10) of the REACH Regulation. (EC) No 1907/2006. https://echa.europa.eu/substance-information/-/substanceinfo/100.003.829

Li, Y., Xie, D., He, L., Zhao, A., Wang, L., Kreisberg, N. M., Jayne, J. T., & Liu, Y. (2022). Dynamics of di-2-ethylhexyl phthalate (DEHP) in the indoor air of an office. Building and Environment, 223, 109446.

Kumawat, M., Sharma, P., Pal, N., James, M. M., Verma, V., Tiwari, R. R., Shubham, S., Sarma, D. K., & Kumar, M. (2022). Occurrence and seasonal disparity of emerging endocrine disrupting chemicals in a drinking water supply system and associated health risk. Scientific Reports, 12(1).

Gani, K. M., Rajpal, A., & Kazmi, A. A. (2016). Contamination level of four priority phthalates in North Indian wastewater treatment plants and their fate in sequencing batch reactor systems. Environmental Science: Processes & Impacts, 18(3), 406–416.

Sarvaiya, V. N., Sadariya, K. A., Rana, M. P., & Thaker, A. M. (2014). Zebrafish as model organism for drug discovery and toxicity testing: a review. Veterinary clinical science, 2(3), 31-38.

Yang, L., Ho, N., Alshut, R., Legradi, J., Weiss, C., Reischl, M., Mikut, R., Liebel, U., Müller, F., & Strähle, U. (2009). Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reproductive Toxicology, 28(2), 245–253.

Hill, A., Teraoka, H., Heideman, W., & Peterson, R. E. (2005). Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicological Sciences, 86(1), 6–19.

Test No. 236: Fish Embryo Acute Toxicity (FET) test. (2013). In OECD guidelines for the testing of chemicals.

Üstündağ, Ü. V., Ünal, İ., Ateş, P. S., Alturfan, A. A., Yiğitbaşı, T., & Emekli-Alturfan, E. (2017). Bisphenol A and di(2-ethylhexyl) phthalate exert divergent effects on apoptosis and the Wnt/β-catenin pathway in zebrafish embryos: A possible mechanism of endocrine disrupting chemical action. Toxicology and Industrial Health, 33(12), 901–910.

Boran, H., & Terzi, S. (2019). Bis(2-ethylhexyl) phthalate induces DNA strand breaks and gene expression alterations in larval zebrafish Danio rerio. Toxicology and industrial health, 35(8), 520–529.

Hamid, N., Junaid, M., Manzoor, R., Jia, P., & Pei, D. (2020). Prioritizing phthalate esters (PAEs) using experimental in vitro/vivo toxicity assays and computational in silico approaches. Journal of Hazardous Materials, 398, 122851.

Muhammad, S., Zheng, Z., Pavase, T. R., & Guo, H. (2018). Long-term exposure of two plasticizers di (2-ethylhexyl) phthalate (DEHP) and acetyl tributyl citrate (ATBC): toxic effects on gonadal development and reproduction of zebrafish (“Danio rerio”). Indian Journal of Geo-Marine Sciences, 47(4), 789–797.

Pu, S., Hamid, N., Ren, Y., & Pei, D. (2020). Effects of phthalate acid esters on zebrafish larvae: Development and skeletal morphogenesis. Chemosphere, 246, 125808.

Lu, C., Luo, J., Liu, Y., & Yang, X. (2021). The oxidative stress responses caused by phthalate acid esters increases mRNA abundance of base excision repair (BER) genes in vivo and in vitro. Ecotoxicology and Environmental Safety, 208, 111525.

Yumnamcha, T., Roy, D., Devi, M. D., & Nongthomba, U. (2015). Evaluation of developmental toxicity and apoptotic induction of the aqueous extract of Millettia pachycarpa using zebrafish as model organism. Toxicological & Environmental Chemistry, 97(10), 1363–1381.

Dave, G., & Ruiqin, X. (1991). Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish,Brachydanio rerio. Archives of Environmental Contamination and Toxicology, 21(1), 126– 134.

Chikae, M., Hatano, Y., Ikeda, R., Morita, Y., Hasan, Q., & Tamiya, E. (2004). Effects of bis(2ethylhexyl) phthalate and benzo[a]pyrene on the embryos of Japanese medaka (Oryzias latipes). Environmental Toxicology and Pharmacology, 16(3), 141–145.

Zhang, Q., Ma, W., & Zhu, J. (2023). Combined toxicities of Di-Butyl phthalate and polyethylene terephthalate to zebrafish embryos. Toxics, 11(5), 469.

Mu, X., Chen, X., Liu, J., Yuan, L., Wang, D., Qian, L., Qian, Y., Shen, G., Huang, Y., Li, X., Li, Y., & Lin, X. (2020). A multi-omics approach reveals molecular mechanisms by which phthalates induce cardiac defects in zebrafish (Danio rerio). Environmental Pollution, 265, 113876.

Heideman, W., Antkiewicz, D. S., Carney, S. A., & Peterson, R. E. (2005). Zebrafish and cardiac toxicology. Cardiovascular Toxicology, 5(2), 203–214.

Bakkers, J. (2011). Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovascular Research, 91(2), 279–288.

Wiegand, J. L., Avila-Barnard, S., Nemarugommula, C., Lyons, D., Zhang, S., Stapleton, H. M., & Volz, D. C. (2023). Triphenyl phosphate-induced pericardial edema in zebrafish embryos is dependent on the ionic strength of exposure media. Environment International, 172, 107757.

Kuzmina, I. V. (2023). The yolk sac as the main organ in the early stages of animal embryonic development. Frontiers in Physiology, 14.

Sant, K. E., & Timme‐Laragy, A. R. (2018). Zebrafish as a model for toxicological perturbation of yolk and nutrition in the early embryo. Current Environmental Health Reports, 5(1), 125–133.

Raldúa, D., André, M., & Babin, P. J. (2008). Clofibrate and gemfibrozil induce an embryonic malabsorption syndrome in zebrafish. Toxicology and Applied Pharmacology, 228(3), 301–314.

Kodde, I. F., Van Der Stok, J., Smolenski, R. T., & De Jong, J. W. (2007). Metabolic and genetic regulation of cardiac energy substrate preference. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 146(1), 26–39.

Li, Q., Wang, P., Chen, L., Gao, H., & Wu, L. (2016). Acute toxicity and histopathological effects of naproxen in zebrafish (Danio rerio) early life stages. Environmental Science and Pollution Research, 23(18), 18832–18841.

Hill, A., Bello, S. M., Prasch, A. L., Peterson, R. E., & Heideman, W. (2004). Water permeability and TCDD-Induced edema in Zebrafish Early-Life Stages. Toxicological Sciences, 78(1), 78–87.

Bagnat, M., & Gray, R. S. (2020). Development of a straight vertebrate body axis. Development, 147(21).

Boswell, C. W., & Ciruna, B. (2017). Understanding Idiopathic scoliosis: a new zebrafish school of thought. Trends in Genetics, 33(3), 183–196.

Bird, N. C., & Mabee, P. M. (2003). Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Developmental Dynamics, 228(3), 337–357.

Dietrich, K., Fiedler, I. A., Kurzyukova, A., López-Delgado, A. C., McGowan, L. M., Geurtzen, K., Hammond, C. L., Busse, B., & Knopf, F. (2021). Skeletal biology and disease modeling in zebrafish. Journal of Bone and Mineral Research, 36(3), 436–458.

Pamanji, R., Yashwanth, B., Bethu, M. S., Leelavathi, S., Ravinder, K., & Rao, J. V. (2015). Toxicity effects of profenofos on embryonic and larval development of Zebrafish (Danio rerio). Environmental Toxicology and Pharmacology, 39(2), 887–897.

Çelik, E. S., Kaya, H., & Yılmaz, S. (2012). Effects of phosalone on mineral contents and spinal deformities in common carp (Cyprinus carpio, L. 1758). Turkish Journal of Fisheries and Aquatic Sciences, 12(2).

Downloads

Published

2024-04-10

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.