In Vivo Antidiabetic Potential Of Niosome Naringin Nanoconjugate In Streptozotocin Induced Diabetic Mice
DOI:
https://doi.org/10.53555/jaz.v45i4.4521Keywords:
diabetes, polyphenols, nanotechnology, biochemical, toxicity, animal modelAbstract
Diabetes mellitus remains a significant global health concern, necessitating the exploration of novel therapeutic strategies. In this study, we investigated the in vivo antidiabetic potential of Niosome Naringin Nanoconjugate, a nanoformulation designed to enhance the bioavailability and therapeutic efficacy of naringin, a naturally occurring flavonoid with reported antidiabetic properties. Male Wistar rats were induced with diabetes mellitus using streptozotocin and treated with Niosome Naringin Nanoconjugate orally for a specified duration. The effects of the nanoconjugate on glucose tolerance, fasting blood glucose levels, insulin resistance, and lipid profile were evaluated. Our results demonstrate that Niosome Naringin Nanoconjugate significantly improved glucose tolerance, reduced fasting blood glucose levels, and ameliorated insulin resistance compared to diabetic control groups. Additionally, the nanoconjugate exhibited enhanced bioavailability and prolonged circulation time, suggesting potential for sustained therapeutic effects. These findings highlight the promising antidiabetic efficacy of Niosome Naringin Nanoconjugate and underscore its potential as a novel therapeutic agent for the management of diabetes mellitus. Further investigations, including long-term safety assessments and clinical trials, are warranted to fully elucidate its clinical applicability. Overall, this study contributes valuable insights into the development of innovative nanomedicine approaches for diabetes management, with Niosome Naringin Nanoconjugate emerging as a promising candidate for future therapeutic interventions.
Downloads
References
Ahmad, M. F., Naseem, N., Rahman, I., Imam, N., Younus, H., Pandey, S. K., & Siddiqui, W. A. (2022). Naringin Attenuates the Diabetic Neuropathy in STZ-Induced Type 2 Diabetic Wistar Rats. Life, 12(12), Article 12. https://doi.org/10.3390/life12122111
Bouché, C., Serdy, S., Kahn, C. R., & Goldfine, A. B. (2004). The Cellular Fate of Glucose and Its Relevance in Type 2 Diabetes. Endocrine Reviews, 25(5), 807–830. https://doi.org/10.1210/er.2003-0026
Dayarathne, L. A., Ranaweera, S. S., Natraj, P., Rajan, P., Lee, Y. J., & Han, C.-H. (2021). Restoration of the adipogenic gene expression by naringenin and naringin in 3T3-L1 adipocytes. Journal of Veterinary Science, 22(4). https://doi.org/10.4142/jvs.2021.22.e55
Den Hartogh, D. J., & Tsiani, E. (2019). Antidiabetic Properties of Naringenin: A Citrus Fruit Polyphenol. Biomolecules, 9(3), Article 3. https://doi.org/10.3390/biom9030099
Fernández-Alvarez, J., Barberà, A., Nadal, B., Barceló-Batllori, S., Piquer, S., Claret, M., Guinovart, J. J., & Gomis, R. (2004). Stable and functional regeneration of pancreatic beta-cell population in nSTZ-rats treated with tungstate. Diabetologia, 47(3), 470–477. https://doi.org/10.1007/s00125-004-1332-8
Fouad, S. A., Teaima, M. H., Gebril, M. I., Abd Allah, F. I., El-Nabarawi, M. A., & Elhabal, S. F. (2023). Formulation of novel niosomal repaglinide chewable tablets using coprocessed excipients: In vitro characterization, optimization and enhanced hypoglycemic activity in rats. Drug Delivery, 30(1), 2181747. https://doi.org/10.1080/10717544.2023.2181747
Gerçek, E., Zengin, H., Erdem Erişir, F., & Yılmaz, Ö. (2021). Biochemical changes and antioxidant capacity of naringin and naringenin against malathion toxicity in Saccharomyces cerevisiae. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 241, 108969.
https://doi.org/10.1016/j.cbpc.2020.108969
Hassan, R. A., Hozayen, W. G., Abo Sree, H. T., Al-Muzafar, H. M., Amin, K. A., & Ahmed, O. M. (2021). Naringin and Hesperidin Counteract Diclofenac-Induced Hepatotoxicity in Male Wistar Rats via Their Antioxidant, Anti-Inflammatory, and Antiapoptotic Activities. Oxidative Medicine and Cellular Longevity, 2021, e9990091. https://doi.org/10.1155/2021/9990091
Hawley, S. A., Gadalla, A. E., Olsen, G. S., & Hardie, D. G. (2002). The Antidiabetic Drug Metformin Activates the AMP-Activated Protein Kinase Cascade via an Adenine Nucleotide-Independent Mechanism. Diabetes, 51(8), 2420–2425. https://doi.org/10.2337/diabetes.51.8.2420
Jahangirian, H., Lemraski, E. G., Webster, T. J., Rafiee-Moghaddam, R., & Abdollahi, Y. (2017). A review of drug delivery systems based on nanotechnology and green chemistry: Green nanomedicine. International Journal of Nanomedicine, 12, 2957–2978. https://doi.org/10.2147/IJN.S127683
Khan, N. U., Qazi, N. G., Khan, A., Ali, F., Hassan, S. S. ul, & Bungau, S. (2022). Anti-diabetic Activity of Brucine in Streptozotocin-Induced Rats: In Silico, In Vitro, and In Vivo Studies. ACS Omega, 7(50), 46358–46370. https://doi.org/10.1021/acsomega.2c04977
Mahendran, G., Manoj, M., Murugesh, E., Sathish Kumar, R., Shanmughavel, P., Rajendra Prasad, K. J., & Narmatha Bai, V. (2014). In vivo anti-diabetic, antioxidant and molecular docking studies of 1, 2, 8-trihydroxy-6-methoxy xanthone and 1, 2-dihydroxy-6-methoxyxanthone-8-O-β-d-xylopyranosyl isolated from Swertia corymbosa. Phytomedicine, 21(11), 1237–1248. https://doi.org/10.1016/j.phymed.2014.06.011
Melesie Taye, G., Bule, M., Alemayehu Gadisa, D., Teka, F., & Abula, T. (2020). In vivo Antidiabetic Activity Evaluation of Aqueous and 80% Methanolic Extracts of Leaves of Thymus schimperi (Lamiaceae) in Alloxan-induced Diabetic Mice. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 13, 3205–3212. https://doi.org/10.2147/DMSO.S268689
Musi, N., Hirshman, M. F., Nygren, J., Svanfeldt, M., Bavenholm, P., Rooyackers, O., Zhou, G., Williamson, J. M., Ljunqvist, O., Efendic, S., Moller, D. E., Thorell, A., & Goodyear, L. J. (2002). Metformin Increases AMP-Activated Protein Kinase Activity in Skeletal Muscle of Subjects With Type 2 Diabetes. Diabetes, 51(7), 2074–2081. https://doi.org/10.2337/diabetes.51.7.2074
Parveen, K., Khan, Mohd. R., Mujeeb, Mohd., & Siddiqui, W. A. (2010). Protective effects of Pycnogenol® on hyperglycemia-induced oxidative damage in the liver of type 2 diabetic rats. Chemico-Biological Interactions, 186(2), 219–227. https://doi.org/10.1016/j.cbi.2010.04.023
Raafat, K. M., & El-Zahaby, S. A. (2020). Niosomes of active Fumaria officinalis phytochemicals: Antidiabetic, antineuropathic, anti-inflammatory, and possible mechanisms of action. Chinese Medicine, 15(1), 40. https://doi.org/10.1186/s13020-020-00321-1
Rangkadilok, N., Sitthimonchai, S., Worasuttayangkurn, L., Mahidol, C., Ruchirawat, M., & Satayavivad, J. (2007). Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food and Chemical Toxicology, 45(2), 328–336. https://doi.org/10.1016/j.fct.2006.08.022
Rotimi, S. O., Adelani, I. B., Bankole, G. E., & Rotimi, O. A. (2018). Naringin enhances reverse cholesterol transport in high fat/low streptozocin induced diabetic rats. Biomedicine & Pharmacotherapy, 101, 430–437. https://doi.org/10.1016/j.biopha.2018.02.116
Salehi, B., Fokou, P. V. T., Sharifi-Rad, M., Zucca, P., Pezzani, R., Martins, N., & Sharifi-Rad, J. (2019). The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals, 12(1), Article 1. https://doi.org/10.3390/ph12010011
Tutunchi, H., Naeini, F., Ostadrahimi, A., & Hosseinzadeh-Attar, M. J. (2020). Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19. Phytotherapy Research, 34(12), 3137–3147. https://doi.org/10.1002/ptr.6781
Uryash, A., Mijares, A., Flores, V., Adams, J. A., & Lopez, J. R. (2021). Effects of Naringin on Cardiomyocytes From a Rodent Model of Type 2 Diabetes. Frontiers in Pharmacology, 12. https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2021.719268
van Wyk, A. S., & Prinsloo, G. (2020). Health, safety and quality concerns of plant-based traditional medicines and herbal remedies. South African Journal of Botany, 133, 54–62.
https://doi.org/10.1016/j.sajb.2020.06.031
Vats, V., Yadav, S. P., & Grover, J. K. (2004). Ethanolic extract of Ocimum sanctum leaves partially attenuates streptozotocin-induced alterations in glycogen content and carbohydrate metabolism in rats. Journal of Ethnopharmacology, 90(1), 155–160. https://doi.org/10.1016/j.jep.2003.09.034
Veiko, A. G., Olchowik-Grabarek, E., Sekowski, S., Roszkowska, A., Lapshina, E. A., Dobrzynska, I., Zamaraeva, M., & Zavodnik, I. B. (2023). Antimicrobial Activity of Quercetin, Naringenin and Catechin: Flavonoids Inhibit Staphylococcus aureus-Induced Hemolysis and Modify Membranes of Bacteria and Erythrocytes. Molecules, 28(3), Article 3. https://doi.org/10.3390/molecules28031252
Wahab, M., Bhatti, A., & John, P. (2022). Evaluation of Antidiabetic Activity of Biogenic Silver Nanoparticles Using Thymus serpyllum on Streptozotocin-Induced Diabetic BALB/c Mice. Polymers, 14(15), Article 15. https://doi.org/10.3390/polym14153138
Yeo, P. L., Lim, C. L., Chye, S. M., Ling, A. P. K., & Koh, R. Y. (2017). Niosomes: A review of their structure, properties, methods of preparation, and medical applications. Asian Biomedicine, 11(4), 301–314.
Zolkepli, H., Widodo, R. T., Mahmood, S., Salim, N., Awang, K., Ahmad, N., & Othman, R. (2022). A Review on the Delivery of Plant-Based Antidiabetic Agents Using Nanocarriers: Current Status and Their Role in Combatting Hyperglycaemia. Polymers, 14(15), Article 15. https://doi.org/10.3390/polym14152991
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ms. Krithika R, Padmini R
This work is licensed under a Creative Commons Attribution 4.0 International License.