An Overview On Nanomaterials, Nanoparticles And Its Various Applications

Main Article Content

Gargi Debnath
Kush Biswas
Ashit Dey
Chandrima Dutta
Tripti Pal
Abhijit Mukherjee
Sourav Kanti Ghosh

Abstract

Smart nanomaterials are distinguished in the current world for their exceptional thermal, electrical, optical, and mechanical properties. Smart materials are appealing options for pharmaceutical analysis because of their distinctive qualities, as analytical chemistry is employed to assess the quality of medicinal products. This research explores the detailed applications of intelligent nanomaterials in pharmaceutical analysis. Analysing the financial challenges, health and safety hazards related to nanomaterials, and conducting life cycle assessments in the pharmaceutical business is a systematic way for using smart nanomaterials on a large scale. Research on nanoparticles and their applications is essential in medicine and the healthcare system. Research on particulate delivery systems, such nanoparticles, has been increasingly active in recent decades. Enhancing public comprehension of the characteristics and applications of nanoparticles significantly aids the fields of biology and medicine.

Downloads

Download data is not yet available.

Article Details

How to Cite
Gargi Debnath, Kush Biswas, Ashit Dey, Chandrima Dutta, Tripti Pal, Abhijit Mukherjee, & Sourav Kanti Ghosh. (2023). An Overview On Nanomaterials, Nanoparticles And Its Various Applications. Journal of Advanced Zoology, 44(5), 1402–1408. https://doi.org/10.53555/jaz.v44i5.4077
Section
Articles
Author Biographies

Gargi Debnath

Assistant Professor, M.R. College of Pharmaceutical Sciences and Research, Bira, Kolkata

Kush Biswas

Associate Professor, M.R. College of Pharmaceutical Sciences and Research, Bira, Kolkata

Ashit Dey

 Assistant Professor, M.R. College of Pharmaceutical Sciences and Research, Bira, Kolkata

Chandrima Dutta

Assistant Professor, M.R. College of Pharmaceutical Sciences and Research, Bira, Kolkata

Tripti Pal

Assistant Professor, M.R. College of Pharmaceutical Sciences and Research, Bira, Kolkata

Abhijit Mukherjee

Assistant Professor, BCDA College of Pharmacy & Technology Campus – 2, Udairajpur, Kolkata

Sourav Kanti Ghosh

Assistant Professor Mayurakshi College of Pharmacy, Sundarpur, West Bengal

References

Sharma D, Hussain CM. Smart nanomaterials in pharmaceutical analysis. Arabian Journal of Chemistry. 2020 Jan 1;13(1):3319-43.

Sharma D, Hussain CM. Smart nanomaterials in pharmaceutical analysis. Arabian Journal of Chemistry. 2020 Jan 1;13(1):3319-43.

Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics. 2016;6(9):1306

Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics. 2016;6(9):1306

Bello, S.A., Agunsoye, J.O., Hassan, S.B., 2015. Synthesis of coconut shell nanoparticles via a top-down approach: assessment of milling duration on the particle sizes and morphologies of coconut shell nanoparticles. Mater.

Biswas, A., Bayer, I.S., Biris, A.S., Wang, T., Dervishi, E., Faupel, F., 2012. Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv. Coll. Interface. Sci. 170, 2–27.

Calvo, P., Remuoon-Lopez, C., Vila-Jato, J.L., Alonso, M.J., 1997. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci. 63, 125–132.

Cao, Y.C., 2002. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 80 (297), 1536–1540.

Chen, C., Xing, G., Wang, J., Zhao, Y., Li, B., Tang, J., Jia, G., Wang, T., Sun, J., Xing, L., Yuan, H., Gao, Y., Meng, H., Chen, Z., Zhao, F., Chai, Z., Fang, X., 2005. Multihydroxylated n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett. 5, 2050–2057.

Cushing, B.L., Kolesnichenko, V.L., O’Connor, C.J., 2004. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946.

Dablemont, C., Lang, P., Mangeney, C., Piquemal, J.-Y., Petkov, V., Herbst, F., Viau, G., 2008. FTIR and XPS study of Pt nanoparticle functionalization and interaction with alumina. Langmuir 24, 5832–5841.

Dong, H., Wen, B., Melnik, R., 2014. Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials. Sci. Rep. 4, 7037.

Dreaden, E.C., Alkilany, A.M., Huang, X., Murphy, C.J., El-Sayed, M.A., 2012. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41, 2740–2779.

Elliott, J.A., Shibuta, Y., Amara, H., Bichara, C., Neyts, E.C., 2013. Atomistic modelling of CVD synthesis of carbon nanotubes and graphene. Nanoscale 5, 6662.

Emery, A.A., Saal, J.E., Kirklin, S., Hegde, V.I., Wolverton, C., 2016. High-throughput computational screening of perovskites for thermochemical water splitting applications.

Eustis, S., El-Sayed, M.A., 2006. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209–217.

Fagerlund, G., 1973. Determination of specific surface by the BET method. Materiaux Constr. 6, 239–245.

Faivre, D., Bennet, M., 2016. Materials science: magnetic nanoparticles line up. Nature 535, 235–236.

Fang, X.-Q., Liu, J.-X., Gupta, V., 2013. Fundamental formulations and recent achievements in piezoelectric nano-structures: a review. Nanoscale 5, 1716.

Ferreira, A.J., Cemlyn-Jones, J., Robalo Cordeiro, C., 2013. Nanoparticles, nanotechnology and pulmonary nanotoxicology. Rev. Port. Pneumol. 19, 28–37.

Garrigue, P., Delville, M.-H., Labruge`re, C., Cloutet, E., Kulesza, P. J., Morand, J.P., Kuhn, A., 2004. Top–down approach for the preparation of colloidal carbon nanoparticles. Chem. Mater. 16, 2984–2986.

Gawande, M.B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., Varma, R.S., 2016. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev. 116, 3722–3811.

Golobic, M., Jemec, A., Drobne, D., Romih, T., Kasemets, K., Kahru, A., 2012. Upon exposure to Cu nanoparticles, accumulation of copper in the isopod Porcellio scaber is due to the dissolved cu ions inside the digestive tract. Environ. Sci. Technol. 46, 12112– 12119.

Greeley, J., Markovic, N.M., 2012. The road from animal electricity to green energy: combining experiment and theory in electrocatalysis. Energy Environ. Sci. 5.

Gross, J., Sayle, S., Karow, A.R., Bakowsky, U., Garidel, P., 2016. Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: Influence of experimental and data evaluation parameters. Eur. J. Pharm. Biopharm. 104, 30–41.

Gujrati, M., Malamas, A., Shin, T., Jin, E., Sun, Y., Lu, Z.-R., 2014. Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release. Mol. Pharm. 11, 2734–2744.

Guo, D., Xie, G., Luo, J., 2014. Mechanical properties of nanoparticles: basics and applications. J. Phys. D Appl. Phys. 47, 13001.

Gupta, K., Singh, R.P., Pandey, A., Pandey, A., 2013. Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli. Beilstein J. Nanotechnol. 4, 345– 351.

Hajipour, M.J., Fromm, K.M., Ashkarran, A. Akbar, de Aberasturi, D. Jimenez, de Larramendi, I.R., Rojo, T., Serpooshan, V., Parak, W.J., Mahmoudi, M., 2012. Antibacterial properties of nanoparticles. Trends Biotechnol. 30, 499–511.

Handy, R.D., von der Kammer, F., Lead, J.R., Hassellov, M., Owen, R., Crane, M., 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17, 287–314.

Hisatomi, T., Kubota, J., Domen, K., 2014. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535.

Holzinger, M., Le Goff, A., Cosnier, S., 2014. Nanomaterials for biosensing applications: a review. Front. Chem. 2, 63.

Ibrahim, K.S., 2013. Carbon nanotubes-properties and applications: a review. Carbon Lett. 14, 131–144. http://dx.doi.org/10.5714/ CL.2013.14.3.131. Ingham, B., 2015. X-ray scattering characterisation of nanoparticles. Crystallogr. Rev. 21, 229–303.

Ma, S., Livingstone, R., Zhao, B., Lombardi, J.R., 2011. Enhanced Raman spectroscopy of nanostructured semiconductor phonon modes. J. Phys. Chem. Lett. 2, 671–674.

Mabena, L.F., Sinha Ray, S., Mhlanga, S.D., Coville, N.J., 2011. Nitrogen-doped carbon nanotubes as a metal catalyst support. Appl. Nanosci. 1, 67–77.

Mallakpour, S., Sirous, F., 2015. Surface coating of a-Al2O3 nanoparticles with poly(vinyl alcohol) as biocompatible coupling agent for improving properties of bio-active poly(amide-imide) based nanocomposites having l-phenylalanine linkages. Prog. Org. Coat. 85, 138–145.

Mansha, M., Khan, I., Ullah, N., Qurashi, A., 2017. Synthesis, characterization and visible-light-driven photoelectrochemical hydrogen evolution reaction of carbazole-containing conjugated polymers. Int. J. Hydrogen Energy.

Mansha, M., Qurashi, A., Ullah, N., Bakare, F.O., Khan, I., Yamani, Z.H., 2016. Synthesis of In2O3/graphene heterostructure and their hydrogen gas sensing properties. Ceram. Int. 42, 11490–11495.

Martis, E., Badve, R., Degwekar, M., 2012. Nanotechnology based devices and applications in medicine: an overview. Chron. Young Sci. 3, 68.

Masciangioli, T., Zhang, W.-X., 2003. Peer reviewed: environmental technologies at the nanoscale. Environ. Sci. Technol. 37, 102A– 108A.

Priyadarshana, G., Kottegoda, N., Senaratne, A., de Alwis, A., Karunaratne, V., Priyadarshana, G., Kottegoda, N., Senaratne, A., de Alwis, A., Karunaratne, V., 2015. Synthesis of magnetite nanoparticles by top-down approach from a high purity ore. J. Nanomater. 2015, 1–8.

Most read articles by the same author(s)