The Role Of Microbes In Environmental Bioremediation: Novel Approaches For Pollution Control
DOI:
https://doi.org/10.53555/jaz.v45i2.3867Keywords:
Microbes, Bioremediation, Pollution Control, Environmental Remediation, Biotechnological Advancements, Sustainable SolutionsAbstract
Environmental pollution poses a significant global challenge, necessitating innovative solutions for its mitigation and remediation. Microbes have emerged as invaluable tools in environmental bioremediation, offering versatile and sustainable approaches to address various forms of contamination. This paper explores the pivotal role of microbes in bioremediation strategies, highlighting novel techniques and applications that harness the microbial world's potential to combat pollution effectively. The study discusses the fundamental mechanisms of microbial-mediated bioremediation, explores emerging biotechnological advancements, and presents case studies illustrating successful microbial interventions. This comprehensive review sheds light on the promising future of microbial-based bioremediation as a key player in pollution control and environmental restoration.
Downloads
References
Atlas, R. M., & Hazen, T. C. (2011). Oil biodegradation and bioremediation: A tale of the two worst spills in U.S. history. Environmental Science & Technology, 45(16), 6709-6715.
Becker, J. U., Stärk, H. J., & Schröder, H. F. (2017). Functional gene screening by polymerase chain reaction amplification and microarray hybridization: Identification of genes involved in degradation of 1,2-dichloroethane. Applied and Environmental Microbiology, 83(17), e01086-17.
Bosch, R., & Heipieper, H. J. (2018). Microbial consortia in environmental biotechnology. Trends in biotechnology, 36(7), 663-672.
Curtis, T. P., Sloan, W. T., & Scannell, J. W. (2014). Estimating prokaryotic diversity and its limits. Proceedings of the National Academy of Sciences, 111(14), 16760-16765.
Eckenfelder, W. W., Jr., & O'Connor, D. J. (2003). Biological wastewater treatment. CRC press.
Gupta, R. K., Saini, V. K., & Jain, R. K. (2019). Applications of nanotechnology in wastewater treatment—a review. Environmental Chemistry Letters, 17(2), 575-595.
Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & Biology, 5(10), R245-R249.
Hassanshahian, M., Emtiazi, G., & Cappello, S. (2014). Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Marine Pollution Bulletin, 82(1-2), 39-44.
Holliger, C., Hahn, D., Harmsen, H., Ludwig, W., Schumacher, W., Tindall, B., ... & Zehnder, A. J. (1998). Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Archives of Microbiology, 169(4), 313-321.
Jørgensen, K. S., & Nybroe, O. (2018). Degradation of aromatic compounds in Pseudomonas, Pseudomonas. Springer, 111-132.
Lehman, P. W., Grismer, M. E., Johnson, M., Hall, N., Hogle, C., & Boyer, G. (2021). Controlling harmful algal blooms in a warming world: State of the science and future perspectives. Harmful Algae, 105, 102036.
León-Zayas, R. I., Novak, P. J., & Strathmann, T. J. (2015). Application of metatranscriptomics to soil environments. Journal of Microbiological Methods, 119, 62-70.
Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., ... & Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental Science & Technology, 40(17), 5181-5192.
Mason, O. U., Hazen, T. C., Borglin, S., Chain, P. S., Dubinsky, E. A., Fortney, J. L., ... & Jansson, J. K. (2012). Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. The ISME Journal, 6(9), 1715-1727.
Mee, M. T., Collins, J. J., Church, G. M., & Wang, H. H. (2014). Syntrophic exchange in synthetic microbial communities. Proceedings of the National Academy of Sciences, 111(20), E2149-E2156.
Mohanty, S. R., Bodelier, P. L., Floris, V., Conrad, R., & Spott, O. (2021). Impact of co-occurring biota on indigenous methanogenic communities during anaerobic degradation of hydrocarbons in oil reservoirs. Microorganisms, 9(8), 1561.
Torsvik, V., Øvreås, L., & Thingstad, T. F. (2002). Prokaryotic diversity--magnitude, dynamics, and controlling factors. Science, 296(5570), 1064-1066.
Van Elsas, J. D., Chiurazzi, M., Mallon, C. A., Elhottovā, D., Krištůfek, V., & Salles, J. F. (2012). Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences, 109(4), 1159-1164.
Ward, J. E., Brown, J. R., Nugent, P. D., & Somenahally, A. C. (2018). Biostimulation and bioaugmentation to enhance bioremediation of high molecular weight polycyclic aromatic hydrocarbons contaminated soil. Microbial Biotechnology, 11(6), 1107-1110.
Zeng, G., Zhang, Y., & Xie, Y. (2018). Microbial degradation of polyaromatic hydrocarbons. In Environmental chemistry and toxicology of polycyclic aromatic hydrocarbons (pp. 217-248). Wiley.
Zhou, L., Zhu, J., & Yong, L. (2020). Recent advances on genetic techniques for synthetic biology applications in bioremediation. Frontiers in Microbiology, 11, 1931.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 M. Abdul Kapur, M. Yuvarani, G. Shiyamala, S.S. Sudha, S. Janaki, J. Prasanna, Amzad Basha Kolar

This work is licensed under a Creative Commons Attribution 4.0 International License.