Formulation Of Fish Feed Using Vermi Wash Fish Pellets Prepared From Recycled Kitchen Organic Waste And Feed Tilapia (Oreochromis Mossambicus) To Increase Fish Growth Under Controlled Condition.

Authors

  • S. Kalaimani Assistant professor of zoology, PG and Research Department of zoology, J.K.K. Nataraja college of Arts and Science, kumarapalayam-638183, Namakkal (D.t), Tamil Nadu, India. 
  • K. Shenkani Assistant professor of zoology, PG and Research Department of zoology, J.K.K. Nataraja college of Arts and Science, kumarapalayam-638183, Namakkal (D.t), Tamil Nadu, India. 
  • R.V. Kalaimathi

DOI:

https://doi.org/10.53555/jaz.v46i2.5289

Keywords:

Eisenia foetida, vermicompost, vermi wash, nutrient-rich compost, Vermiwash pellets, Tilapia   fish.

Abstract

Fish farming is hailed by some as a solution to the overfishing problem. However, these farms are far from benign and can severely damage ecosystems by introducing diseases, pollutants and invasive species. The damage caused by fish farms varies, depending on the type of fish, how it is raised and fed, the size of the production, and where the farm is located. analyzing the nutrient quality and improve in future and further research of our vermi wash fish pellets we can make informed decisions about using it as a soil amendment and fertilizer to support healthy fish growth and improve fish production in our indoor rearing center and ornamental fish rearing center.

 

Downloads

Download data is not yet available.

Author Biography

R.V. Kalaimathi

Assistant Professor, P.G. and Research Department of zoology A.P.A. Arts and College, Palani, Dindigul (dt), Tamil Nadu, India

References

1. Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [Cross Ref]

2. Kumar, A.; Bohra, B. Green technology in relation to sustainable agriculture. In Green Technologies for Sustainable Agriculture; Daya Publishing House: Delhi, India, 2006. [Google Scholar]

3. De Castro, F.; Vergaro, V.; Benedetti, M.; Baldassarre, F.; Del Coco, L.; Dell’Anna, M.M.; Mastrorilli, P.; Fanizzi, F.P.; Ciccarella, G. Visible light-activated water-soluble platicur nanocolloids: Photocytotoxicity and metabolomics studies in cancer cells. ACS Appl. 2020, 3, 6836–6851. [Google Scholar] [CrossRef] [PubMed]

4. De Castro, F.; Stefàno, E.; Migoni, D.; Iaconisi, G.N.; Muscella, A.; Marsigliante, S.; Benedetti, M.; Fanizzi, F.P. Synthesis and Evaluation of the Cytotoxic Activity of Water-Soluble Cationic Organometallic Complexes of the Type [Pt (η1−C2H4OMe) (L)(Phen)] (L = NH3, DMSO; Phen = 1,10-Phenanthroline). Pharmaceutics 2021, 13, 642. [Google Scholar] [Cross Ref] [PubMed]

5. Benedetti, M.; Antonucci, D.; De Castro, F.; Girelli, C.R.; Lelli, M.; Roveri, N.; Fanizzi, F.P. Metalated nucleotide chemisorption on hydroxyapatite. J. Inorg. Biochem. 2015, 153, 279–283. [Google Scholar] [Cross Ref]

6. Ravindran, B.; Wong, J.W.; Selvam, A.; Sekaran, G. Influence of microbial diversity and plant growth hormones in compost and vermicompost from fermented tannery waste. Bioresour. Technol. 2016, 217, 200–204. [Google Scholar] [Cross Ref]

7. Datta, S.; Singh, J.; Singh, S.; Singh, J. Earthworms, pesticides and sustainable agriculture: A review. Environ. Sci. Pollut. Res. 2016, 23, 8227–8243. [Google Scholar] [Cross Ref]

8. Tripathi, Y.; Hazaria, P.; Kaushik, P.; Kumar, A. Vermitechnology and waste management. In Verms and Vermitechnology, SB Nangia; APH Publishing Corp: New Delhi, India, 2005; pp. 9–21. [Google Scholar]

9. Coria-Cayupaán, Y.S.; de Pinto, M.A.I.S.; Nazareno, M.A. Variations in bioactive substance contents and crop yields of lettuce (Lactuca sativa L.) cultivated in soils with different fertilization treatments. J. Agric. Food Chem. 2009, 57, 10122–10129. [Google Scholar] [Cross Ref] [PubMed]

10. Goutam, K.C.; Goutam, B.; Susanta, K.C. The effect of vermicompost and other fertilizers on cultivation of tomato plants. J. Hortic. For. 2011, 3, 42–45. [Google Scholar]

11. Ruz-Jerez, B.; Ball, P.R.; Tillman, R. Laboratory assessment of nutrient release from a pasture soil receiving grass or clover residues, in the presence or absence of Lumbricus rubellus or Eisenia fetida. Soil Biol. Biochem. 1992, 24, 1529–1534. [Google Scholar] [Cross Ref]

12. Parkin, T.B.; Berry, E.C. Nitrogen transformations associated with earthworm casts. Soil Biol. Biochem. 1994, 26, 1233–1238. [Google Scholar] [Cross Ref]

13. Adhikary, S. Vermicompost, the story of organic gold: A review. Agric. Sci. 2012, 3, 905–917. [Google Scholar] [Cross Ref]

14. Atiyeh, R.; Arancon, N.; Edwards, C.; Metzger, J. Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresour. Technol. 2000, 75, 175–180. [Google Scholar] [Cross Ref]

15. Yatoo, A.M.; Rasool, S.; Ali, S.; Majid, S.; Rehman, M.U.; Ali, M.; Eachkoti, R.; Rasool, S.; Rashid, S.M.; Farooq, S. Vermicomposting: An eco-friendly approach for recycling/management of organic wastes. In Bioremediation and Biotechnology; Springer: Cham, Switzerland, 2020; pp. 167–187. [Google Scholar]

16. Ayyobi, H.; Hassanpour, E.; Alaqemand, S.; Fathi, S.; Olfati, J.; Peyvast, G. Vermicompost leachate and vermiwash enhance French dwarf bean yield. Int. J. Veg. Sci. 2014, 20, 21–27. [Google Scholar] [Cross Ref]

17. Bidabadi, S.S. Waste management using vermicompost derived liquids in sustainable horticulture. Trends Hortic. 2018, 1, 175. [Google Scholar]

18. Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. 2017, 4, 5. [Google Scholar] [Cross Ref]

19. Puglisi, E.; Pascazio, S.; Suciu, N.; Cattani, I.; Fait, G.; Spaccini, R.; Crecchio, C.; Piccolo, A.; Trevisan, M. Rhizosphere microbial diversity as influenced by humic substance amendments and chemical composition of rhizodeposits. J. Geochem. Explor. 2013, 129, 82–94. [Google Scholar] [Cross Ref]

20. Krishnamoorthy, R.; Vajranabhaiah, S. Biological activity of earthworm casts: An assessment of plant growth promotor levels in the casts. Proc. Anim. Sci. 1986, 95, 341–351. [Google Scholar] [Cross Ref]

21. Amooaghaie, R.; Golmohammadi, S. Effect of vermicompost on growth, essential oil, and health of Thymus Vulgaris. Compos. Sci. Util. 2017, 25, 166–177. [Google Scholar] [Cross Ref]

22. Sahab, S.; Suhani, I.; Srivastava, V.; Chauhan, P.S.; Singh, R.P.; Prasad, V. Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. Sci. Total Environ. 2021, 764, 144164. [Google Scholar] [Cross Ref]

23. Ahmad, A.; Aslam, Z.; Hussain, D.; Bellitürk, K.; Javed, T.; Hussain, S.; Bashir, S.; Raza, A.; Alotaibi, S.; Kalaji, H.M. Rice straw vermicompost enriched with cellulolytic microbes ameliorate the negative effect of drought in wheat through modulating the morpho-physiological attributes. Front. Environ. Sci. 2022, 10, 497. [Google Scholar] [Cross Ref]

24. Basco, M.; Bisen, K.; Keswani, C.; Singh, H. Biological management of Fusarium wilt of tomato using biofortified vermicompost. Mycosphere 2017, 8, 467–483. [Google Scholar] [Cross Ref]

25. Manandhar, T.; Yami, K. Biological control of foot rot disease of rice using fermented products of compost and vermicompost. Sci. World J. 2008, 6, 52–57. [Google Scholar] [Cross Ref]

26. Pathma, J.; Sakthivel, N. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus 2012, 1, 26. [Google Scholar] [Cross Ref]

27. Pattnaik, S.; Reddy, M.V. Nutrient status of vermicompost of urban green waste processed by three earthworm species—Eisenia fetida, Eudrilus eugeniae, and Perionyx excavatus. Appl. Environ. Soil Sci. 2010, 2010, 967526. [Google Scholar] [Cross Ref]

28. Ahmed, N.; Al-Mutairi, K.A. Earthworms Effect on Microbial Population and Soil Fertility as Well as Their Interaction with Agriculture Practices. Sustainability 2022, 14, 7803. [Google Scholar] [Cross Ref]

29. Fragoso, C.; Kanyonyo, J.; Moreno, A.; Senapati, B.K.; Blanchart, E.; Rodriguez, C. A survey of tropical earthworms: Taxonomy, biogeography and environmental plasticity. Earthworm Manag. Trop. Agroecosyst. 1999, 1–26. [Google Scholar]

30. Eggleton, P.; Inward, K.; Smith, J.; Jones, D.T.; Sherlock, E. A six-year study of earthworm (Lumbricidae) populations in pasture woodland in southern England shows their responses to soil temperature and soil moisture. Soil Biol. Biochem. 2009, 41, 1857–1865. [Google Scholar] [Cross Ref]

31. Vivas, A.; Moreno, B.; Garcia-Rodriguez, S.; Benitez, E. Assessing the impact of composting and vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill waste. Bioresour. Technol. 2009, 100, 1319–1326. [Google Scholar] [Cross Ref] [PubMed]

32. Gopal, M.; Bhute, S.S.; Gupta, A.; Prabhu, S.; Thomas, G.V.; Whitman, W.B.; Jangid, K. Changes in structure and function of bacterial communities during coconut leaf vermicomposting. Antonie Van Leeuwenhoek 2017, 110, 1339–1355. [Google Scholar] [Cross Ref]

33. Edwards, C.A.; Bohlen, P.J. Biology and Ecology of Earthworms; Springer Science & Business Media: London, UK, 1996; Volume 3. [Google Scholar]

34. Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol. 2017, 27, R713–R715. [Google Scholar] [Cross Ref] [PubMed]

35. Carpenter, D.; Hodson, M.E.; Eggleton, P.; Kirk, C. Earthworm induced mineral weathering: Preliminary results. Eur. J. Soil Biol. 2007, 43, S176–S183. [Google Scholar] [Cross Ref]

36. Al-Maliki, S.; Scullion, J. Interactions between earthworms and residues of differing quality affecting aggregate stability and microbial dynamics. Appl. Soil Ecol. 2013, 64, 56–62. [Google Scholar] [Cross Ref]

37. Ritsema, C.J.; Dekker, L. Preferential flow in water repellent sandy soils: Principles and modeling implications. J. Hydrol. 2000, 231, 308–319. [Google Scholar] [Cross Ref]

38. Atiyeh, R.M.; Domínguez, J.; Subler, S.; Edwards, C.A. Changes in biochemical properties of cow manure during processing by earthworms (Eisenia andrei, Bouché) and the effects on seedling growth. Pedobiologia 2000, 44, 709–724. [Google Scholar] [Cross Ref]

39. Lavelle, P.; Charpentier, F.; Villenave, C.; Rossi, J.-P.; Derouard, L.; Pashanasi, B.; André, J.; Ponge, J.-F.; Bernier, N. Effects of earthworms on soil organic matter and nutrient dynamics at a landscape scale over decades. Earthworm Ecol. 2004, 2, 145–160. [Google Scholar]

40. Alegre, J.; Pashanasi, B.; Lavelle, P. Dynamics of soil physical properties in Amazonian agroecosystems inoculated with earthworms. Soil Sci. Soc. Am. J. 1996, 60, 1522–1529. [Google Scholar] [Cross Ref]

41. Ernst, G.; Henseler, I.; Felten, D.; Emmerling, C. Decomposition and mineralization of energy crop residues governed by earthworms. Soil Biol. Biochem. 2009, 41, 1548–1554. [Google Scholar] [Cross Ref]

42. Lubbers, I.M.; Pulleman, M.M.; Van Groenigen, J.W. Can earthworms simultaneously enhance decomposition and stabilization of plant residue carbon? Soil Biol. Biochem. 2017, 105, 12–24. [Google Scholar] [Cross Ref]

43. Aira, M.; Domínguez, J. Earthworm effects without earthworms: Inoculation of raw organic matter with worm-worked substrates alters microbial community functioning. PLoS ONE 2011, 6, e16354. [Google Scholar] [Cross Ref] [PubMed]

44. Aira, M.; Monroy, F.; Domínguez, J. Changes in bacterial numbers and microbial activity of pig slurry during gut transit of epigeic and anecic earthworms. J. Hazard. Mater. 2009, 162, 1404–1407. [Google Scholar] [Cross Ref] [PubMed]

45. Chapuis-Lardy, L.; Bayon, R.-C.L.; Brossard, M.; López-Hernández, D.; Blanchart, E. Role of soil macrofauna in phosphorus cycling. In Phosphorus in Action; Springer: Berlin/Heidelberg, Germany, 2011; pp. 199–213. [Google Scholar]

46. Blouin, M.; Hodson, M.E.; Delgado, E.A.; Baker, G.; Brussaard, L.; Butt, K.R.; Dai, J.; Dendooven, L.; Pérès, G.; Tondoh, J. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 2013, 64, 161–182. [Google Scholar] [Cross Ref]

47. Seeber, J.; Seeber, G.; Langel, R.; Scheu, S.; Meyer, E. The effect of macro-invertebrates and plant litter of different quality on the release of N from litter to plant on alpine pastureland. Biol. Fertil. Soils 2008, 44, 783–790. [Google Scholar] [Cross Ref]

48. Sampedro, L.; Domínguez, J. Stable isotope natural abundances (δ13C and δ15N) of the earthworm Eisenia fetida and other soil fauna living in two different vermicomposting environments. Appl. Soil Ecol. 2008, 38, 91–99. [Google Scholar] [Cross Ref]

49. Thakuria, D.; Schmidt, O.; Finan, D.; Egan, D.; Doohan, F.M. Gut wall bacteria of earthworms: A natural selection process. ISME J. 2010, 4, 357–366. [Google Scholar] [Cross Ref]

50. De Menezes, A.B.; Prendergast-Miller, M.T.; Macdonald, L.M.; Toscas, P.; Baker, G.; Farrell, M.; Wark, T.; Richardson, A.E.; Thrall, P.H. Earthworm-induced shifts in microbial diversity in soils with rare versus established invasive earthworm populations. FEMS Microbiol. Ecol. 2018, 94, fiy051. [Google Scholar] [Cross Ref]

51. Fujii, K.; Ikeda, K.; Yoshida, S. Isolation and characterization of aerobic microorganisms with cellulolytic activity in the gut of endogeic earthworms. Int. Microbiol. 2012, 15, 121–130. [Google Scholar] [PubMed]

52. Johnsen, A.R.; Wick, L.Y.; Harms, H. Principles of microbial PAH-degradation in soil. Environ. Pollut. 2005, 133, 71–84. [Google Scholar] [Cross Ref]

53. Chan, K.; Baker, G.; Conyers, M.; Scott, B.; Munro, K. Complementary ability of three European earthworms (Lumbricidae) to bury lime and increase pasture production in acidic soils of south-eastern Australia. Appl. Soil Ecol. 2004, 26, 257–271. [Google Scholar] [Cross Ref]

54. Van Groenigen, J.W.; Van Groenigen, K.J.; Koopmans, G.F.; Stokkermans, L.; Vos, H.M.; Lubbers, I.M. How fertile are earthworm casts? A meta-analysis. Geoderma 2019, 338, 525–535. [Google Scholar] [Cross Ref]

55. Le Bayon, R.-C.; Milleret, R. Effects of earthworms on phosphorus dynamics–a review. Dyn. Soil Dyn. Plant 2009, 3, 21–27. [Google Scholar]

56. Nuutinen, V.; Pitkänen, J.; Kuusela, E.; Widbom, T.; Lohilahti, H. Spatial variation of an earthworm community related to soil properties and yield in a grass–clover field. Appl. Soil Ecol. 1998, 8, 85–94. [Google Scholar] [Cross Ref]

57. Curry, J.P.; Schmidt, O. The feeding ecology of earthworms–a review. Pedobiologia 2007, 50, 463–477. [Google Scholar] [Cross Ref]

58. Neilson, R.; Boag, B. Feeding preferences of some earthworm species common to upland pastures in Scotland. Pedobiologia 2003, 47, 1–8. [Google Scholar] [Cross Ref]

59. Lowe, C.N.; Butt, K.R. Influence of food particle size on inter-and intra-specific interactions of Allolobophora chlorotica (Savigny) and Lumbricus terrestris: The 7th international symposium on earthworm ecology Cardiff Wales·2002. Pedobiologia 2003, 47, 574–577. [Google Scholar]

60. Satchell, J.E. Lumbricidae. In Soil Biology; Burges, A., Raw, F., Eds.; Academic Press: London, UK, 1967; pp. 259–322. [Google Scholar]

Downloads

Published

2025-11-18

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.