Application Of Metagenomics In Agriculture

Main Article Content

Shovana Pal
Keshab Ghosh
Dr. Aritri Laha

Abstract

Metagenomics is the evaluation of the structure and function of entire nucleotide sequences isolated and analysed from a bulk sample.  In comparison to conventional methodologies, metagenomics contains a larger amount of genetic data. It is crucial to understand and increase crop yields in both rural and urban agriculture because the microbial community associated with plant roots is crucial for plant growth and development. Metagenomic approaches can be utilised to identify the microorganisms and their functional genetic features even if some of these microbes are currently not culturable in the lab. Improved plant development and sustained crop production in soil and soilless agriculture should result   thorough understanding of these species and their interaction procedure. The goal of this review is to shed light on metagenomic approaches used to investigate the microbial ecology and related microbiota of plant roots. Metagenomics is enabling an understanding of these microbes and their biotechnological potentials, which may then be leveraged to create novel, useful, and eco-friendly bio-fertilizers and bio-pesticides.

Downloads

Download data is not yet available.

Article Details

How to Cite
Shovana Pal, Keshab Ghosh, & Dr. Aritri Laha. (2023). Application Of Metagenomics In Agriculture. Journal of Advanced Zoology, 44(S6), 2248–2251. Retrieved from http://jazindia.com/index.php/jaz/article/view/3703
Section
Articles
Author Biographies

Shovana Pal

Student of M.Sc., Department of Microbiology, School of Life Sciences, Swami Vivekananda University, Barrackpore, 700012, West Bengal, India.

Keshab Ghosh

Student of M.Sc., Department of Microbiology, School of Life Sciences, Swami Vivekananda University, Barrackpore, 700012, West Bengal, India.

Dr. Aritri Laha

Assistant Professor, Department of Microbiology, School of Life Sciences, Swami Vivekananda University, Barrackpore, 700012, West Bengal, India.

References

Levy, M. A., and Lubell, M. N. (2018). Innovation, cooperation, and the structure of three regional sustainable agriculture networks in California. Reg. Environ. Change 18, 1235–1246. doi: 10.1007/s10113-017-1258-6

Singh, T., Gangil, B., Patnaik, A., Biswas, D., and Fekete, G. (2019). Agriculture waste reinforced cornstarch-based biocomposites: effect of rice husk/walnut shell on physicomechanical, biodegradable and thermal properties. Mater. Res. Express 6, 1–11. doi: 10.1088/2053-1591/aafe45

Garrido-Oter, R., Nakano, R. T., Dombrowski, N., Ma, K. W., Team, T. A., Mchardy, A. C., et al. (2018). Modular traits of the rhizobiales root microbiot and their evolutionary relationship with symbiotic rhizobia. Cell Host Microbe 24, 155–167.e5. doi:10.1016/j.chom.2018.06.006

Goel, R., Suyal, D. C., Dash, B., and Soni, R. (2017). “Soil metagenomics: A tool for sustainable agriculture,” in Mining of Microbial Wealth and Metagenomics, eds V. C. Kalia, Y. Shouche, H. J. Purohit, and P. Rahi (New York, NY: Springer), 217–225.

Sabale, S. N., Suryawanshi, P. P., and Krishnaraj, P. (2019). Soil Metagenomics: Concepts and Applications. Metagenomics-Basics, Methods and Applications. London: Intech Open.

Farouk, F., El Shimy, R., Abdel-Motaleb, A., Essam, S., and Azzazy, H. M. (2020). Detection of Acinetobacter baumannii in fresh produce using modified magnetic nanoparticles and PCR. Anal. Biochem. 609, 113890. doi: 10.1016/j.ab.2020.113890

Zhang, L., Chen, F., Zeng, Z., Xu, M., Sun, F., Yang, L., et al. (2021). Advances in metagenomics and its application in environmental microorganisms. Front. Microbiol. 12, 766364–766364. doi: 10.3389/fmicb.2021.766364

Babalola, O. O., Alawiye, T. T., Lopez, C.R., and Ayangbenro, A.S.(2020).Shotgun metagenomic sequencing data of sunflower rhizosphere microbial community in South Africa. Data Br. 31, 105831. doi: 10.1016/j.dib.2020.105831

Guerra, A. B., Oliveira, J. S., Silva-Portela, R. C., Araújo, W., Carlos, A. C., Vasconcelos, A. T. R., et al. (2018). Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation. Environ. Pollut. 235, 869–880. doi: 10.1016/j.envpol.2018. 01.014

Ma, C., Lo, P. K., Xu, J., Li, M., Jiang, Z., Li, G., et al. (2020). Molecular mechanisms underlying lignocellulose degradation and antibiotic resistance genes removal revealed via metagenomics analysis during different agricultural wastes composting. Biores. Technol. 314, 123731. doi: 10.1016/j.biortech.2020.123731

Ruiz, O. N., Brown, L. M., Radwan, O., Bowen, L. L., Gunasekera, T. S., Mueller, S. S., et al. (2021). Metagenomic characterization reveals complex association of soil hydrocarbon-degrading bacteria. Int. Biodeter. Biodegr. 157, 105161 doi: 10.1016/j.ibiod.2020.105161

Young, A. D., and Gillung, J. P. (2020). Phylogenomics-principles, opportunities pitfalls of big-data phylogenetics. Syst. Entomol. 45, 225–247.doi: 10.1111/syen.12406

Emms, D. M., and Kelly, S. (2019). OrthoFinder: phylogenetic orthology Inference for comparative genomics. Genome Biol. 20, 1–14. doi: 10.1186/s13059-019-1832-y

Wu, L., Wang, J., Wu, H., Chen, J., Xiao, Z., Qin, X., et al. (2018b). Comparative metagenomic analysis of rhizosphere microbial community composition and functional potentials under Rehmannia glutinosa consecutive monoculture. Int. J. Mol. Sci. 19, 2394. doi: 10.3390/ijms19082394

Salem, M. A., Perez De Souza, L., Serag, A., Fernie, A. R., Farag, M. A., Ezzat, S. M., et al. (2020). Metabolomics in the context of plant natural products research: from sample preparation to metabolite analysis. Metabolites 10, 37.doi: 10.3390/metabo10010037