Development of Saponin based Nano emulsion formulations from Phaleria macrocarpa to Control Aphis gossypii

Main Article Content

Abdul Rehman Roonjho, Rita Muhamad Awang, Anis S Mokhtar*, Nurhayo Asib

Abstract

Aphis gossypii is one of the most devastating insect pests of agricultural crops due to its polyphagous nature. A sustainable environment friendly method to manage this pest is botanical aphicides because of their easily biodegradability and overall safety. In this study, saponin based nano emulsions from Phaleria macrocarpa with Termul 1284 and methyl oleate /rapeseed oil were formulated and tested against A. gossypii for their efficacy in both laboratory and glasshouse conditions.  Results exhibited that all three formulated nano emulsions effectively suppressed A. gossypii population under laboratory and glasshouse conditions. However, TR3 revealed highest repellency (62%) and mortality percentage (100%) with lowest LC50 (1516 mg-L1) and LT50 (27.50 h), following by TM1 repellency (58%) and mortality percentage (98%) with lowest LC50 (1732 mg-L1) and LT50 (34.43 h). Glasshouse bioassay also revealed that TR3 (Termul 1284+rapeseed oil) and TM1 (Termul 1284+methyl oleate) could suppress A. gossypii population at LC50 values of 2512 and 2904 mg-L1 at 72 hours and LT50 values of 68.7 and 71.2 hours at 10000 mg-L1 respectively. Therefore, these both formulations could be considered as eco-friendly alternative approach in pesticides technology.

Downloads

Download data is not yet available.

Article Details

How to Cite
Anis S Mokhtar*, Nurhayo Asib, A. R. R. . R. M. A. . (2022). Development of Saponin based Nano emulsion formulations from Phaleria macrocarpa to Control Aphis gossypii. Journal of Advanced Zoology, 43(1), 43–55. https://doi.org/10.17762/jaz.v43i1.113
Section
Articles

References

Rostami M, Zamani A, Goldasteh S, Shoushtari R & Kheradmand K, Influence of nitrogen fertilization on biology of aphis gossypii (Hemiptera: Aphididae) reared on Chrysanthemum iindicum (Asteraceae). J Plant Protec Res 52 (2012) 118.

https://doi.org/10.2478/v10045-012-0019-2 DOI: https://doi.org/10.2478/v10045-012-0019-2

Ma L, Li M, Chang C, Chen F & Y Hu, The host range of Aphis gossypii is dependent on aphid genetic background and feeding experience. Peer J 1 (2019) 19. https://doi.org/10.7717/peerj.7774. DOI: https://doi.org/10.7717/peerj.7774

Jaharlal S, Chakraborty K & Chatterjee T, Biology of cotton Aphid Aphis gossypii Glover. J Glob Biosci 5 (2016) 4467.

Ghosh A, Das A, Meena R & Baranwal VK, Evidence for resistance to Citrus tristeza virus in pomelo (Citrus maxima Merr.) grown in Darjeeling and Sikkim hills of India. Phytoparasitica, 42 (2014) 503. DOI: https://doi.org/10.1007/s12600-014-0387-4

Dedryver C, AL-Ralec & Fabre F, Comptes Rendus Biologies The conflicting relationships between aphids and men : A review of aphid damage and control strategies Les relations conflictuelles entre les pucerons et les hommes : ˆts et les strate 333 (2010) 539. https://doi.org/10.1016/j.crvi.2010.03.009 DOI: https://doi.org/10.1016/j.crvi.2010.03.009

Uzair M, Khattak TN, Rahman H, Daud MK, Waheed M & Azizullah A, Effects of neem (azadirachta indica) seed and turmeric (Curcuma longa) rhizome extracts on aphids control, plant growth and yield in okra. J App Bot Food Qual 91 (2018) 194.

Roonjho AR, Gillani WA, Rasool A, Akhtar N, Mahmood T, Arsalan A, Afzal M, Khan I, Ranjha MA, Irfan M & Khan J, Repellency effects of different plant extracts to cotton mealy bug, Phenococus solenopsis Tinsley (Hemiptera: Pseudococcidae). Pak J Agric Res 26 (2013) 213.

Kim KH, Kabir E & Jahan SA, Exposure to pesticides and the associated human health effects. Sci Tot Environ 575 (2017) 525. https://doi.org/10.1016/j.scitotenv.2016.09.009 DOI: https://doi.org/10.1016/j.scitotenv.2016.09.009

Hassaan MA & Nemr A, Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egyp J Aqua Res 46 (2020) 207.

https://doi.org/10.1016/j.ejar.2020.08.007 DOI: https://doi.org/10.1016/j.ejar.2020.08.007

Isman MB, Botanical Insecticides, Deterrents, and Repellents in Modern Agriculture and an Increasingly Regulated World. Ann Rev Ento 51 (2006) 45. https://doi.org/10.1146/annurev.ento.51.110104.151146 DOI: https://doi.org/10.1146/annurev.ento.51.110104.151146

Adel M, Sehnal F & Jurzysta M, Effects of alfalfa saponins on the moth Spodoptera littoralis. J Chem Ecol 26 (2000) 1065. DOI: https://doi.org/10.1023/A:1005445217004

El-wakeil N, Botanical Pesticides and Their Mode of Action. Gesu Pflan 65 (2013) 125. https://doi.org/10.1007/s10343-013-0308-3 DOI: https://doi.org/10.1007/s10343-013-0308-3

Roonjho AR, Rita MA, Mokhtar AS & Asib N. Development of saponin-based nano emulsions formulation from selected medicinal plants to control Aphis gossypii. Pak J life soc Sci, 19(2021) 82.

Roonjho AR, Rita MA & Omar D, Determination of lethal and feeding deterrent activities of saponin from Phaleria macrocarpa against Pomacea maculata. J Anim Plant Sci. 31(2021) 1070.

Mokhtar AS, Nano emulsion formulation of saponin to control black apple snails, Pomacea maculata Perry. (PhD Thesis, Universiti Putra Malaysia, Serdang, Selangor) 2016.

Singh B & Kaur A, Food Science and Technology Control of insect pests in crop plants and stored food grains using plant saponins : A review. Food Sci Tech 87 (2018) 93. https://doi.org/10.1016/j.lwt.2017.08.077 DOI: https://doi.org/10.1016/j.lwt.2017.08.077

Kim WJ, Veriansyah B, Lee YW, Kim J & Kim JD, Extraction of mangiferin from Mahkota Dewa (Phaleria macrocarpa) using subcritical water. J Ind Eng Chem 16 (2010) 425. https://doi.org/10.1016/j.jiec.2009.08.008 DOI: https://doi.org/10.1016/j.jiec.2009.08.008

Hending W, Benzophenone glucoside isolated from the ethyl acetate extract of the bark of mahkota dewa (Phaleria macrocarpa (Scheff.) Boerl.) and its inhibitory activity on leukemia L1210. Indo J Chem 9 (2009) 142 DOI: https://doi.org/10.22146/ijc.21576

Altaf R, Asmawi MZ, Dewa A, Sadikun A & Umar MI, Phytochemistry and medicinal properties of Phaleria macrocarpa (Scheff.) Boerl. extracts. Pharmacogn Review, 7(2013) 73. https://doi.org/10.4103/0973-7847.112853 DOI: https://doi.org/10.4103/0973-7847.112853

Gotama IBI, Sugiarto S, Nurhadi M, Widiyastuti Y, Wahyono S & Prapti IJ, Inventaris tanaman obat Indonesia. 5th Ed. Deptt. Kesehatan Bandan. Pen. dan Peng. Jakarta,1999.

Roonjho AR, Rita MA, Mokhtar AS & Asib N, Quantification of saponin from selected medicinal plants and their aphicidal activities against cotton aphid, Aphis gossypii under laboratory conditions. Int J Agricult Stat Sci 18(2022) 409.

Aboofazeli R & Lawrence M, Investigations into the formation and characterization of phorspholipid microemulsions. II. Pseudo-Ternary phase diagrams of systems containing water-lecithin-isoprophyl mysistate and alcohol: influence of purity of lecithin. Int J Pharm 106 (1994) 51. DOI: https://doi.org/10.1016/0378-5173(94)90275-5

Shafiq S, Shakeel F, Talegaonkar S, Ahmed FJ, Khar RK & Ali M, Development and bioavailability assessment of Ramipril nanoemulsion formulation. Eur J Pharm Biopharm 66 (2007) 227. DOI: https://doi.org/10.1016/j.ejpb.2006.10.014

Flanagan J, Kortegaard K, Pinder DN, Rades T & Sigh H, Solubilisation of soybean oil in microemulsions using various surfactants. Food Hydrocoll 20 (2006) 253. DOI: https://doi.org/10.1016/j.foodhyd.2005.02.017

Chen Y, Li Y, Su Z & Xian J, Insecticidal and Repellent Action of Pogostone Against Myzus persicae (Hemiptera: Aphididae). Florida Entomol 100 (2017) 346. https://doi.org/10.1653/024.100.0233 DOI: https://doi.org/10.1653/024.100.0233

Insecticide Resistence Action Committee (IRAC). IRAC Susceptibility Test Methods Series, Method No. 019. Available at http://www.irac-online.org

Pavela R, Essential oils from Foeniculum vulgare Miller as a safe environmental insecticide against the aphid Myzus persicae Sulzer. Environ Sci Pollut Res 25 (2018) 10904. https://doi.org/10.1007/s11356-018-1398-3 DOI: https://doi.org/10.1007/s11356-018-1398-3

Gurpreet K & Singh SK, Review of nanoemulsion formulation and characterization techniques. Ind J Pharmacol Sci 80 ((2018) 781. DOI: https://doi.org/10.4172/pharmaceutical-sciences.1000422

Tadros TF, Emulsion Formation, Stability and Rheology. 1st Edition. 2013, John Wiley & Sons. DOI: https://doi.org/10.1002/9783527647941.ch1

Lovett R & Baus M, A molecular theory of the Laplace relation and of the local forces in a curved interface, J Chem Phys 106 (1997) 635. DOI: https://doi.org/10.1063/1.473384

Taylor P, Ostwald ripening in emulsions. Adv Coll Inter Sci 75 (1998) 107. DOI: https://doi.org/10.1016/S0001-8686(98)00035-9

Reddy SR, Melik DH & Fogler HS, Emulsion Stability-Theoretical Studies on Simultaneous Flocculation and Creaming. J Coll Inter Sci 82 (1980) 1. DOI: https://doi.org/10.1016/0021-9797(81)90129-6

Hubbard AT, Encyclopedia of surface and colloid science. 2004, CRC Press, 4230.

Burlatsky SF, Atrazhev VV, Dmitriev DV, Sultanov VI, Timokhina EN, Ugolkova EA, Tulyani S & Vincitore A, Surface tension model for surfactant solutions at the critical micelle concentration. J Coll Inter Sci 393 (2013) 151. DOI: https://doi.org/10.1016/j.jcis.2012.10.020

Murgich J, Molecular recognition and molecular mechanics of micelles of some model asphaltenes and resins. Energy Fuels 10 (1996) 68. DOI: https://doi.org/10.1021/ef950112p

Bibette J, Leal-Calderon F, Schmitt VV & Poulin P, Introduction In: Emulsion science- Basic principles. 2002, Springer. DOI: https://doi.org/10.1007/3-540-70820-0

Ali, Z.A. Oil-based nanoemulsion of Metarhizium anisopliae (Metschn) sorkin to control red palm weevil Rhynchophorus ferrugineus. (PhD Thesis, Universiti Putra Malaysia, Serdang, Selangor) 2018.

Gupta V & Trivedi P, In vitro and in vitro characterization of pharmaceutical topical nanocarriers containing anticancer drugs for skin cancer treatment Lipid Nanocarriers for Drug Targeting, 2018, William Andrew Publishing. DOI: https://doi.org/10.1016/B978-0-12-813687-4.00015-3

Shanmugam A & Ashokkumar M, Ultrasonic preparation of stable flax seed oil emulsions in dairy systems-Physicochemical characteriza-tion. Food Hydrocol 39 (2014) 151. DOI: https://doi.org/10.1016/j.foodhyd.2014.01.006

Wooster TJ, Golding M, Sanguangri P, Impact of oil type on an emulsion formulation and Ostwald ripening stability, Langmuir 24 (2008) 12758. DOI: https://doi.org/10.1021/la801685v

Tadros TF, Izquierdo P, Esquena J & Solans C, Formation and stability of nano-emulsions. Adv Coll Inter Sci (2004) 108. DOI: https://doi.org/10.1016/j.cis.2003.10.023

Dolma SK, Sharma E, Gulati A & Reddy SGE, Insecticidal activities of tea saponin against diamondback moth, Plutella xylostella and aphid , Aphis craccivora Plutella xylostella and aphid , Aphis craccivora. Toxin Rev. (2017) 1. https://doi.org/10.1080/15569543.2017.1318405 DOI: https://doi.org/10.1080/15569543.2017.1318405

De-Geyter ED, Smagghe G, Rahbe Y & Geelen D, Triterpene saponins of Quillajasaponaria show strong aphicidal and deterrent activity against the pea aphid Acyrthosiphonpisum. Pest Manag Sci 68 (2011) 164. DOI: https://doi.org/10.1002/ps.2235

Golawska S & Lukasik I, Acceptance of low-saponin lines of alfalfa with varied phenolic concentrations by pea aphid ( Homoptera : Aphididae ). Biologia (Bratisl). 64 (2009) 377. https://doi.org/10.2478/s11756-009-0051-5 DOI: https://doi.org/10.2478/s11756-009-0051-5

Go1awska S, Łukasik I, Golawski A, Kapusta I & Janda B, Alfalfa (Medicago sativa L.) apigenin glycosides and their effect on the pea aphid (Acyrthosiphonpisum). Pol J Environ Stud 19 (2010) 913.

Lebbal S, Hedjazi N, Tabti I, Ouarghi H & Zeraib A, Aphicidal Activity of Plant Extracts Against Larvae Aphicidal Activity of Plant Extracts Against Larvae of Aphis fabae. Acta Entomol Serb 23 (2018) 1. https://doi.org/10.5281/zenodo.1479736

Soule S, Guntner C, Vazquez A, Argandona V, Moyna P & Ferreira F, An aphid repellent glycoside from Solanum laxum. Phytochem 55 (2000) 217. DOI: https://doi.org/10.1016/S0031-9422(00)00273-9

Horber E, Leath KT, Berrang B, Marcarian V & Hanson CH, Biological activities of saponin components from Du Puits and Lahontan alfalfa. Entomol Exp App 17 (1974) 410. DOI: https://doi.org/10.1111/j.1570-7458.1974.tb00360.x

Su Y & Ye Y, Biopesticide, used as insecticide and acaricide to prevent various fruit/vegetable pests and mites including e.g. citrus red mite, comprises tea saponin, plant oil, emulsifier, stabilizer, anti- freezing agent and water. Patent no. CN102511510-A 2012.

Rattan R, Reddy SGE & Dolma SK, Triterpenoid saponins from Clematis graveolens Lindl. and evaluation of their insecticidal activity. Nat Prod Commun 10 (2015) 15. DOI: https://doi.org/10.1177/1934578X1501000909

Guo SK, Gong YJ, Chen JC, Shi P, Cao LJ, Yang Q, Hoffmann AA & Wei SJ, Increased density of endosymbiotic Buchnera related to pesticide resistance in yellow morph of melon aphid. J Pestic Sci 93 (2020) 1281. https://doi.org/10.1007/s10340-020-01248-0 DOI: https://doi.org/10.1007/s10340-020-01248-0

Nawaz M, Mabubu JI & Hua H, Current status and advancement of biopesticides: Microbial and botanical pesticides. J Entomol Zool St 4 (2016) 241.

Khan SH & Pathak B, Zinc oxide based photocatalytic degradation of persistent pesticides: A comprehensive review. Environ Nanotech Mon Manag 13 (2020) 100290. DOI: https://doi.org/10.1016/j.enmm.2020.100290