Advancing Forensic Investigations: Biomarker Identification through Entomology and Chemical Fingerprinting

Authors

  • Ramnikant Kumar
  • Sunil kumar
  • Santosh Vasantrao Rankhamb
  • Nitin Devendra Padwal
  • Purushottam Rambhau More
  • Bameshwar prasad Sinha

DOI:

https://doi.org/10.53555/jaz.v47i1.5340

Keywords:

Forensic entomology, Biomarker discovery, Chemical fingerprinting, Toxicological analysis, Insect-derived evidence

Abstract

Evolving practices in forensic science are shifting toward the use of biological and chemical evidence to enhance precision, reliability, and interpretive depth in criminal investigations. Integration of entomology with chemical fingerprinting presents a powerful strategy for identifying biomarkers that remain stable across varied postmortem and environmental conditions. Insects associated with decomposing remains serve as sensitive biological matrices capable of recording temporal exposure to drugs, toxins, and pollutants. Their tissues, exoskeletons, and byproducts such as secretions and pupal casings act as chemical archives that retain forensic relevance when traditional samples degrade. This review explores the underlying principles of chemical fingerprinting applied to entomological evidence, addressing methods for biomarker discovery, analytical validation, and forensic deployment. Emphasis is placed on the expanding role of aquatic and semi-aquatic insects, enabling forensic investigations in challenging environments. Advantages, limitations, and the evidentiary significance of insect-based biomarkers are critically examined. Furthermore, the discussion highlights future research directions involving integration of omics technologies, predictive modeling, and cross-disciplinary training to bridge laboratory innovation with applied forensic practice. Consolidation of these emerging approaches reveals the potential for insect-derived chemical biomarkers to contribute meaningfully to forensic toxicology, postmortem interval estimation, and environmental crime investigation.

Downloads

Download data is not yet available.

Author Biographies

Ramnikant Kumar

Research Scholar MJPRU (Bareilly College) Zoology Department

Sunil kumar

Professor, department MJPRU (Bareilly college)

Santosh Vasantrao Rankhamb

Associate Professor of Zoology, Late Ramesh Warpudkar ACS college Sonpeth Distract Parbhani

(Maharashtra) India – 431516

Nitin Devendra Padwal

Associate Prof. and Head Department of Zoology, shankarrao Patil Mahavidyalaya Bhoom

Purushottam Rambhau More

 Assistant  Prof. Department of Zoology, Kai. Rasika Mahavidyalaya Deoni Dist. Latur Maharashtra, India

Bameshwar prasad Sinha

Assistant Prof. Department of Chemistry S.B.S govt.PG College Rudrapur (Uttarakhand)

References

[1] J. Byrd and L. Sutton, “Forensic entomology for the investigator,” Wiley Interdisciplinary Reviews: Forensic Science, vol. 2, art. e1370, 2020.

[2] L. Lutz, R. Zehner, M. A. Verhoff, H. Bratzke, and J. Amendt, “It is all about the insects: a retrospective on 20 years of forensic entomology highlights the importance of insects in legal investigations,” International Journal of Legal Medicine, vol. 135, pp. 2637–2651, 2021.

[3] J. O. Obafunwa, A. Roe, and L. Higley, “A review of the estimation of postmortem interval using forensic entomology,” Medicine, Science and the Law, vol. 65, pp. 52–64, 2025.

[4] C. Scieuzo, R. Rinaldi, F. De Stefano, A. Di Fazio, and P. Falabella, “The contribution of molecular biology to forensic entomology,” Insects, vol. 16, 2025.

[5] S. Bansode, A. Morajkar, V. Ragade, V. More, and K. Kharat, “Challenges and considerations in forensic entomology: A comprehensive review,” Journal of Forensic and Legal Medicine, vol. 110, p. 102831, 2025.

[6] A. W. Meeds and J. J. Parrott, “A review of forensic entomology in the Pacific United States,” Wiley Interdisciplinary Reviews: Forensic Science, vol. 3, no. 5, art. e1423, 2021.

[7] L. Iancu, G. Necula-Petrareanu, and C. Purcarea, “Potential bacterial biomarkers for insect colonization in forensic cases: preliminary quantitative data on Wohlfahrtiimonas chitiniclastica and Ignatzschineria indica dynamics,” Scientific Reports, vol. 10, art. 8497, 2020.

[8] R. A. Costa, N. A. Dos Santos, T. S. M. Corrêa, N. L. P. Wyatt, C. A. Chamoun, M. T. W. D. Carneiro, and W. Romão, “Detection of Pb, Ba, and Sb in cadaveric maggots and pupae by ICP-MS,” Journal of Forensic Sciences, vol. 65, no. 6, pp. 2188–2193, 2020.

[9] J. Hodeček, “Revisiting the concept of entomotoxicology,” Forensic Science International:

Synergy, vol. 2, pp. 282–286, 2020.

[10] S. A. Sari, N. W. Muda, M. A. Mohamed Huri, A. S. Abdul Keyon, A. R. Azman, and N. A. Mahat, “Analysis of poisons and drugs in entomological specimens for forensic applications: A review,” Arab Journal of Basic and Applied Sciences, vol. 30, no. 1, pp. 401–428, 2023.

[11] M. Peruch, M. Buffon, Z. Jakovski, C. Spiliopoulou, R. Addobbati, M. Franzin, P. A. Magni, and S. D’Errico, “Comparative toxicological analyses of traditional matrices and blow fly larvae in four cases of highly decomposed human cadavers,” Insects, vol. 15, no. 7, art. 500, 2024.

[12] J. E. Giffen, J. Y. Rosati, C. M. Longo, and R. A. Musah, “Species identification of necrophagous insect eggs based on amino acid profile differences revealed by direct analysis in real time–high resolution mass spectrometry,” Analytical Chemistry, vol. 89, no. 14, pp. 7719–7726, 2017.

[13] D. B. McIntyre, B. M. Dawson, B. Long, and P. S. Barton, “A review of multidisciplinary decomposition research and key drivers of variation in decay,” International Journal of Legal Medicine, 2024.

[14] P. Gong, J. N. Kehl, M. R. Sanford, and X. Zhou, “The smell of death: state-of-theart and future research directions,” Frontiers in Microbiology, vol. 14, art. 1260869, 2023. [15] K. C. Titus, S. F. Gallegos, and P. A. Prada-Tiedemann, “Forensic odor analysis: current application in postmortem examinations,” Research and Reports in Forensic Medical Science, vol. 12, pp. 1–12, 2022.

[16] M. G. M. Ghazi, L. C. Lee, H. Sino, and M. I. A. Halim, “Review of contemporary chemometric strategies applied on preparing GC–MS data in forensic analysis,” Microchemical Journal, vol. 181, Art. no. 107732, 2022.

[17] B. M. Quinby, J. C. Creighton, and E. A. Flaherty, “Stable isotope ecology in insects: A review,” Ecological Entomology, vol. 45, no. 6, pp. 1231–1246, 2020.

[18] J. Li, Y. J. Wu, M. F. Liu, N. Li, L. H. Dang, G. S. An, X. J. Lu, L. L. Wang, Q. X. Du, et al., “Multi-omics integration strategy in the post-mortem interval of forensic science,” Talanta, vol. 268, p. 125249, 2024.

[19] S. Matuszewski and A. Mądra-Bielewicz, “Field validation of post-mortem interval estimation based on insect development. Part 1: Accuracy gains from the laboratory rearing of insect evidence,” Forensic Science International, vol. 354, p. 111902, 2024.

[20] A. M. Ahmed, A. M. Alotaibi, W. S. Al-Qahtani, F. Tripet, and S. A. Amer, “Forensic DNA analysis of mixed mosquito blood meals: STR profiling for human identification,” Insects, vol. 14, no. 5, art. 467, 2023.

[21] L. Franceschetti, J. Pradelli, F. Tuccia, G. Giordani, C. Cattaneo, and S. Vanin, “Comparison of accumulated degree-days and entomological approaches in post mortem interval estimation,” Insects, vol. 12, no. 3, art. 264, 2021.

[22] O. C. Groth, P. A. Kori Yahia, F. Reckel, A. Jensen, A. Pi, et al., “Evaluating the value of entomotoxicology in forensic toxicology casework using the first minipig model,” Forensic Toxicology, 2025.

[23] T. Liu, Z. Li, D. Wang, X. Chen, and L. Zeng, “Deep learning-based image recognition for intra-puparial age estimation of Sarcophaga peregrina,” Computers in Biology and Medicine, vol. 146, p. 105569, 2022.

[24] M. Nardiello, C. Scieuzo, R. Salvia, D. Farina, D. Scala, J. A. Cammack, J. K. Tomberlin, K. C. Persaud, and P. Falabella, “Odorant binding proteins from Hermetia illucens: potential sensing elements for detecting volatile aldehydes involved in early stages of organic decomposition,” Nanotechnology, vol. 33, no. 20, p. 205501, 2022.

[25] K. Cavalcante, T. Peniche, B. L. B. Façanha, C. M. Araújo, T. A. S. Lobato, and R. N. P. Souto, “Effect of diazinon (organophosphate) on the composition and succession of Calliphoridae assemblages in rabbit carcasses in the Eastern Amazon,” International Journal of Legal Medicine, vol. 137, no. 5, pp. 1253–1261, 2023.

[26] A. M. Ahmed, A. M. Alotaibi, W. S. Al-Qahtani, F. Tripet, and S. A. Amer, “Forensic DNA analysis of mixed mosquito blood meals: STR profiling for human identification,” Insects, vol. 14, no. 5, art. 467, 2023.

[27] B. L. B. Façanha, M. C. Esposito, et al., “Domestic filth flies in New Haven, Connecticut: a case study on the effects of urbanization and climate change by comparing fly populations after 78 years,” Insects, vol. 12, no. 11, art. 972, 2021.

[28] R. G. Heath and P. R. Lee, “Forensic entomology in New Zealand – a gap assessment,” Australian Journal of Forensic Sciences, vol. 55, no. 5, pp. 483–498, 2023.

[29] C. L. Quinby, A. M. Tarone, and J. R. David, “Using stable isotopes to determine natal origin and feeding habits of blow flies,” Scientific Reports, vol. 10, art. 18256, 2020.

[30] D. Stewart-Yates, G. L. Maker, S. D’Errico, and P. A. Magni, “Advances and current status in the use of cuticular hydrocarbons for forensic entomology applications,” Insects, vol. 16, no. 2, art. 144, 2025.

[31] S. Sharif, C. Wunder, M. K. Khan, A. Qamar, and J. Amendt, “Cuticular hydrocarbons as weathering biomarkers of empty puparia of the blowfly Calliphora vicina in soil versus room conditions,” Forensic Science International, vol. 349, p. 111748, 2023.

[32] S. Sharif, C. Wunder, J. Amendt, and A. Qamar, “Deciphering the impact of microenvironmental factors on cuticular hydrocarbon degradation in Lucilia sericata empty puparia: bridging ecological and forensic perspectives using machine learning models,” Science of the Total Environment, vol. 913, p. 169719, 2024.

[33] D. R. da Silva, A. C. dos Santos, I. L. de Lima, F. R. P. de Mansoldo, A. R. J. da Silva, et al., “Chemical profiling of developmental stages in three major flies via direct infusion mass spectrometry: improving estimates of minimum postmortem intervals in forensic entomology,” Journal of Forensic Sciences, 2025.

[34] J. Mei, S. Liu, H. Tao, S. Shao, Y. Yang, and Y. Wang, “Micro-FTIR spectroscopy combined with machine learning algorithms can estimate the weathering time of Thanatophilus sinuatus larval exuviae,” Microchemical Journal, Art. no. 115091, 2025.

[35] H. Qu, X. Zhang, C. Ye, F. J. Ngando, Y. Shang, F. Yang, J. Xiao, S. Chen, and Y. Guo, “Combining spectrum and machine learning algorithms to predict the weathering time of empty puparia of Sarcophaga peregrina,” Forensic Science International, vol. 361, p. 112144, 2024.

[36] Y. Shang, Y. Feng, L. Ren, X. Zhang, F. Yang, C. Zhang, and Y. Guo, “Pupal age estimation of Sarcophaga peregrina (Diptera: Sarcophagidae) at different constant temperatures utilizing ATR-FTIR spectroscopy and cuticular hydrocarbons,” Insects, vol. 14, no. 2, Art. no. 143, 2023.

[37] K. Feng, Y. Cai, Y. Zhang, B. Liu, Q. Wang, et al., “Age estimation of Phormia regina pupae based on ATR-FTIR spectroscopy and chemometrics,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 293, p. 122482, 2024.

[38] G. Hu, M. Wang, Y. Wang, M. Liao, J. Hu, Y. Zhang, Y. Yu, and J. Wang, “Estimation of post-mortem interval based on insect species present on a corpse found in a suitcase,” Forensic Science International, vol. 306, p. 110046, 2020.

[39] O. Groth, S. Franz, H. Fels, J. Krueger, G. Roider, T. Dame, F. Musshoff, and M. Graw, “Unexpected results found in larvae samples from two postmortem forensic cases,” Forensic Toxicology, vol. 40, no. 1, pp. 144–155, 2022.

[40] S. Jain, J. J. Parrott, and G. T. Javan, “Exploring the impact of xenobiotic drugs on forensic entomology for accurate post-mortem interval estimation,” Frontiers in Insect Science, 2025 (in press).

[41] S. Li, Z. Hu, Y. Shao, G. Zhang, Z. Wang, Y. Guo, Y. Wang, W. Cui, Y. Wang, and L. Ren, “Influence of drugs and toxins on decomposition dynamics: forensic implications,” Molecules, vol. 29, no. 22, p. 5221, 2024.

[42] J. T. Jales, T. M. Barbosa, V. R. F. Moreira, S. D. Vasconcelos, V. de P. S. Rachetti, and R. A. Gama, “Effects of terbufos (organophosphate) on larval behavior of two forensically important Diptera species: contributions to entomotoxicology,” Neotropical Entomology, vol. 52, no. 6, pp. 1155–1164, 2023.

[43] A. Clarke, K. Brown, et al., “The use of blowfly larvae for offender identification during death investigations with non-consensual sexual contact,” Journal of Forensic Entomology, vol. 1, no. 1, 2024.

[44] M. N. Krosch, N. Johnston, J. Wallman, T. Bedoe, and M. H. Moreau,

“Retrospective review of forensic entomology casework in eastern Australia from 1994 to 2022,” Forensic Science International, vol. 367, p. 112355, 2025.

[45] Z. Kotzé, S. Aimar, J. Amendt, G. S. Anderson, L. Bourguignon, M. J. R. Hall, and J. K. Tomberlin, “The forensic entomology case report a global perspective,” Insects, vol. 12, no. 4, art. 283, 2021.

[46] D. Charabidze and D. Martín-Vega, “Looking back to move forward: how review articles could boost forensic entomology,” Insects, vol. 12, no. 7, art. 648, 2021.

[47] R. B. Hoffman, “Forensic DNA recovery for insect identification from specimens prepared for morphological analysis,” M.S. thesis, Univ. of California, Davis, CA, USA, 2025.

[48] R. Das, M. Singhal, P. Singh, R. Verma, M. S. Sankhla, M. Saxena, and R. S. Yadav, “Forensic entomology: a novel approach in crime investigation,” Insects, vol. 12, no. 4, art. 314, 2021.

[49] P. A. Magni, K. R. Sutton, A. H. Winokur, and C. J. Dadour, “A summary of concepts, procedures and techniques used by forensic entomologists at a crime scene and in the laboratory,” Insects, vol. 14, no. 4, art. 351, 2023.

Downloads

Published

2026-01-21

Issue

Section

Articles

Similar Articles

<< < 41 42 43 44 45 46 47 48 49 50 > >> 

You may also start an advanced similarity search for this article.