Hospital-Driven Antimicrobial Resistance: A Comprehensive Evidence-Based Synthesis Of Drivers, Transmission, And Control Strategies

Authors

  • Birupaksha Biswas
  • Dr. Damini Joshi
  • Dr. Twinkle Bharatbhai Patel
  • Dr. Angel Saluja
  • Dr Vaishnavi Raundal
  • Shalom Shungu Chakaringa

DOI:

https://doi.org/10.53555/jaz.v46i2.5333

Keywords:

Antimicrobial resistance; Drug-resistant infections; Hospital-acquired infections; Antimicrobial stewardship; Infection prevention and control; Healthcare-associated transmission; Surveillance; Public health

Abstract

Antimicrobial resistance (AMR) is one of the most important global public health concerns of the twenty-first century, and hospital settings play a critical role in the emergence, amplification, and dissemination of drug-resistant illnesses. Healthcare facilities offer the ideal conditions for the selection and spread of resistance due to the concentration of vulnerable patient groups, widespread use of antibiotics, invasive procedures, and complex care pathways. This study evaluates the effectiveness of hospital-based management strategies and offers a comprehensive, evidence-based summary of the ways in which hospitals fuel antibiotic resistance. A PRISMA-informed evidence synthesis assisted by Litmaps citation-network analysis was used to locate and examine recent and significant literature from Scopus, Web of Science, PubMed, and Crossref-indexed sources. Twenty-five papers that met the inclusion criteria were subjected to a qualitative synthesis. The primary hospital-specific drivers of resistance found in the analysis include inappropriate antimicrobial prescribing, selective pressure from broad-spectrum agents, inadequate infection prevention and control (IPC) practices, environmental contamination, and healthcare-associated transmission through patients, healthcare personnel, and shared equipment. High-priority pathogens like methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, multidrug-resistant Gram-negative bacteria, and Clostridium difficile are highlighted because of their disproportionate role in healthcare-associated infections, prolonged hospital stays, increased healthcare costs, and mortality. Numerous studies show that antimicrobial stewardship programs are the most effective hospital-based approach for reducing antibiotic use and resistance rates. Although IPC bundles, surveillance systems, rapid diagnosis, and environmental cleaning all cooperate to limit transmission pathways, their results vary based on the resources, infrastructure, and adherence of each location. Underappreciated elements that contribute to the persistence of resistance include environmental reservoirs and intra-hospital transmission networks. This synthesis emphasizes that hospital-driven AMR is a systemic problem that cannot be solved by isolated initiatives. Coordinated, context-specific actions combining antimicrobial stewardship, robust IPC, environmental control, and surveillance are essential to reducing the incidence of drug-resistant diseases and preserving the effectiveness of currently available antimicrobials.

Downloads

Download data is not yet available.

Author Biographies

Birupaksha Biswas

Public health Scholar, Parul institute of Public Health (PIPH), Parul University, Vadodara, Gujarat, India.Mail:2419381010004@paruluniversity.ac.in, ORCID: 0009-0008-6782-1790

Dr. Damini Joshi

Assistant professor, Parul Institute of public Health (PIPH), Parul University, Vadodara, India.damini.joshi19835@paruluniversity.ac.in

Dr. Twinkle Bharatbhai Patel

Public Health Scholar, Parul institute of Public Health (PIPH) Mail: twinkle15131@gmail.com

Dr. Angel Saluja

Public health Scholar, Parul institute of Public Health (PIPH), Parul University, Vadodara, Gujarat, India. Mail: angelsaluja8@gmail.com

Dr Vaishnavi Raundal

Health Specialist, Parul institute of Public Health (PIPH), Parul University, Vadodara, Gujarat, India. Mail: vaishnaviraundal29@gmail.com

Shalom Shungu Chakaringa

Public health Scholar, Parul Institute of Public Health (PIPH)
Email: shalomchakaringa7@gmail.com

References

1. Andersson, D. I., Nicoloff, H., & Hjort, K. (2022). Mechanisms and clinical relevance of bacterial heteroresistance. Nature Reviews Microbiology, 20(5), 257–269. https://doi.org/10.1038/s41579-021-00655-9

2. Andersson, D. I. (2018). The biological cost of mutational antibiotic resistance. Annual Review of Microbiology, 72, 375–392. https://doi.org/10.1146/annurev-micro-090817-062646

3. Andersen, B. M. (2018). Background information: Isolation routines. In Prevention and control of infections in hospitals: Practice and theory (5th ed., pp. 1–22). Springer. https://doi.org/10.1007/978-3-319-99921-0_1

4. Apisarnthanarak, A., & Weber, D. J. (2018). Environmental cleaning in resource-limited settings. Current Treatment Options in Infectious Diseases, 10(1), 48–54. https://doi.org/10.1007/s40506-018-0149-9

5. Barlam, T. F., Cosgrove, S. E., Abbo, L. M., MacDougall, C., Schuetz, A. N., Septimus, E. J., Srinivasan, A., Dellit, T. H., Falck-Ytter, Y. T., Fishman, N. O., Hamilton, C. W., Jenkins, T. C., Lipsett, P. A., Malani, P. N., May, L. S., Moran, G. J., Neuhauser, M. M., Newland, J. G., Ohl, C. A.Trivedi,K.K.(2016).Implementing an antibiotic stewardship program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clinical Infectious Diseases, 62(10), e51–e77.https://doi.org/10.1093/cid/ciw118

6. Bassetti, M., Kanj, S. S., Kiratisin, P., Rodrigues, C., Van Duin, D., Villegas, M. V., & Yu, Y. (2022). Early appropriate diagnostics and treatment of MDR Gram-negative infections. JAC-Antimicrobial Resistance, 4(5), dlac089. https://doi.org/10.1093/jacamr/dlac089

7. Baur, D., Gladstone, B. P., Burkert, F., Carrara, E., Foschi, F., Döbele, S., & Tacconelli, E. (2017). Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: a systematic review and meta-analysis. The Lancet Infectious Diseases, 17(9), 990–1001. https://doi.org/10.1016/S1473-3099(17)30325-0

8. Bonnin, R. A., et al. (2018). Genomic insights into the dissemination of carbapenemase-producing Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 62(5), e02420-17. https://doi.org/10.1128/AAC.02420-17

9. Browne, A. J., Kashef Hamadani, B. H., Kumaran, E. A. P., Rao, P., Longbottom, J., Harriss, E., Moore, C. E., Dunachie, S., Basnyat, B., Baker, S., Lopez, A. D., Day, N. P. J., Hay, S. I., & Dolecek, C. (2020). Drug-resistant enteric fever worldwide, 1990 to 2018: A systematic review and meta-analysis. BMC Medicine, 18(1), Article 1. https://doi.org/10.1186/s12916-019-1443-1

10. Cassini, A., Högberg, L. D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G. S., Colomb-Cotinat, M., Kretzschmar, M. E., Devleesschauwer, B., Cecchini, M., Ouakrim, D. A., Oliveira, T. C., Struelens, M. J., Suetens, C., Monnet, D. L., & ECDC Burden of AMR Collaborative Group. (2019).Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and EEA. The Lancet Infectious Diseases, 19(1), 56–66. https://doi.org/10.1016/S1473-3099(18)30605-4

11. Castro-Sánchez, E., Gilchrist, M., Ahmad, R., Courtenay, M., Bosanquet, J., & Holmes, A. H. (2019).Nurse roles in antimicrobial stewardship: Lessons from public sector models of acute care service delivery in the United Kingdom. BMC Nursing, 18, Article 162.https://doi.org/10.1186/s12912-019-0363-7

12. Chemaly, R. F., Simmons, S., Dale, C., Ghantoji, S. S., Rodriguez, M., Gubb, J., Stachowiak, J., & Stibich, M. (2014). The role of the healthcare environment in the spread of multidrug-resistant organisms: update on current best practices for containment. Therapeutic Advances in Infectious Disease, 2(3–4), 79–90. https://doi.org/10.1177/2049936114543287

13. Chia, P. Y., et al. (2020). Hospital environment and MDRO transmission. Antimicrobial Resistance & Infection Control, 9, 10. https://doi.org/10.1186/s13756-020-0685-1

14. Cohen, B., Liu, J., Cohen, A. R., & Larson, E. (2018). Association between healthcare-associated infection and exposure to hospital roommates and previous bed occupants with the same organism. Infection Control & Hospital Epidemiology, 39(5), 541–546. https://doi.org/10.1017/ice.2018.22.

15. Chia, P. Y., Sengupta, S., & Lye, D. C. (2020). The role of the hospital environment in transmissions of multidrug-resistant gram-negative organisms. Antimicrobial Resistance & Infection Control, 9, 10. https://doi.org/10.1186/s13756-020-0685-1

16. Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., & WHO Pathogens Priority List Working Group. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria. The Lancet Infectious Diseases, 18(3), 318–327.

https://doi.org/10.1016/S1473-3099(17)30753-3

17. Davey, P., Brown, E., Fenelon, L., Finch, R., Gould, I., Holmes, A., Ramsay, C., Taylor, E., Wiffen, P., & Wilcox, M. (2006). Systematic review of antimicrobial drug prescribing in hospitals. Health Technology Assessment, 10(36), 1–164. https://doi.org/10.3310/hta10360

18. Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74(3), 417–433. https://doi.org/10.1128/MMBR.00016-10

19. Dancer, S. J. (2014). Controlling hospital-acquired infection. Journal of Hospital Infection, 86(1), 1–6. https://doi.org/10.1016/j.jhin.2013.09.006

20. Davey, P., et al. (2017). Interventions to improve antibiotic prescribing practices. Cochrane Database of Systematic Reviews, CD003543. https://doi.org/10.1002/14651858.CD003543.pub4

21. Dancer, S. J. (2014). Controlling hospital-acquired infection. Journal of Hospital Infection, 86(1), 1–6. https://doi.org/10.1016/j.jhin.2013.09.006

22. David, M. Z., & Daum, R. S. (2010).Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences. Clinical Microbiology Reviews, 23(3), 616–687. https://doi.org/10.1128/CMR.00081-09

23. Fluit, A. C. (2018). Towards more virulent and resistant pathogens. Clinical Microbiology and Infection, 24(6), 590–593. https://doi.org/10.1016/j.cmi.2017.12.018

24. Founou, R. C., et al. (2017). Clinical and economic impact of antibiotic resistance. Journal of Global Antimicrobial Resistance, 8, 1–7. https://doi.org/10.1016/j.jgar.2016.09.002

25. Giamarellou, H., Galani, L., Karavasilis, T., Ioannidis, K., & Karaiskos, I. (2023). Antimicrobial stewardship in the hospital setting: A narrative review. Antibiotics, 12(10), 1557. https://doi.org/10.3390/antibiotics12101557

26. Ghosh, S., Bornman, C., & Zafer, M. M. (2018). Antimicrobial resistance threats in the emerging COVID-19 pandemic: Where do we stand? Journal of Infection and Public Health, 11(3), 366–372. https://doi.org/10.1016/j.jiph.2018.01.005

27. Hays, J. P., Mitsakakis, K., Luz, S., van Belkum, A., Becker, K., van den Bruel, A., Harbarth, S., Rex, J. H., Skov Simonsen, G., Werner, G., Di Gregori, V., Lüdke, G., van Staa, T., Moran-Gilad, J., & Bachmann, T. T. (2019). The successful uptake and sustainability of rapid infectious disease and antimicrobial resistance point-of-care testing requires a complex “mix-and-match” implementation package. European Journal of Clinical Microbiology & Infectious Diseases, 38(6), 1015–1022. https://doi.org/10.1007/s10096-019-03492-4

28. Hurlimann, M., et al. (2020). Genomic surveillance of multidrug-resistant organisms in hospital networks. The Lancet Infectious Diseases, 20(3), 331–340. https://doi.org/10.1016/S1473-3099(19)30630-6

29. Holmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., & Piddock, L. J. V. (2016).Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet, 387(10014), 176–187. https://doi.org/10.1016/S0140-6736(15)00473-0

30. Harbarth, S., et al. (2015). AMR: One world, one fight! Antimicrobial Resistance & Infection Control, 4, 49. https://doi.org/10.1186/s13756-015-0091-2

31. Henry, E. J., Smith, R. B., Collins, M., Bird, S. J., Gowland, P., & Cassella, J. P. (2017). Infection control in the UK: An antimicrobial resistance perspective. International Journal of Infection Control, 13(2). https://doi.org/10.3396/IJIC.v13i2.011.17

32. Holmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., & Piddock, L. J. V. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet, 387(10014), 176–187. https://doi.org/10.1016/S0140-6736(15)00473-0

33. Jansen, W. T. M., van der Bruggen, J. T., Verhoef, J., & Fluit, A. C. (2006). Bacterial resistance: A sensitive issue: Complexity of the challenge and containment strategy in Europe. Drug Resistance Updates, 9(3), 123–133. https://doi.org/10.1016/j.drup.2006.06.002

34. Karkada, U. H., Adamic, L. A., Kahn, J. M., & Iwashyna, T. J. (2011). Limiting the spread of highly resistant hospital-acquired microorganisms via critical care transfers: A simulation study. Critical Care Medicine, 39(6), 1469–1476. https://doi.org/10.1097/CCM.0b013e31820eb4c0

35. Kizny Gordon, A. E., Mathers, A. J., Cheong, E. Y. L., Gottlieb, T., Kotay, S., Walker, A. S., Peto, T. E. A., Crook, D. W., & Stoesser, N. (2017). The hospital water environment as a reservoir for carbapenem-resistant organisms causing hospital-acquired infections — a systematic review of the literature. Clinical Infectious Diseases, 64(10), 1435–1444. https://doi.org/10.1093/cid/cix132

36. Klein, E. Y., Sun, L., Smith, D. L., & Laxminarayan, R. (2013).The changing epidemiology of methicillin-resistant Staphylococcus aureus in the United States: A national observational study. American Journal of Epidemiology, 177(7), 666–674.

https://doi.org/10.1093/aje/kws273

37. Karanika, S., Karantanos, T., Arvanitis, M., Grigoras, C., & Mylonakis, E. (2016).

Fecal colonization with extended-spectrum beta-lactamase-producing Enterobacteriaceae and risk factors among healthy individuals: A systematic review and meta-analysis. Clinical Infectious Diseases, 63(3), 310–318.https://doi.org/10.1093/cid/ciw283

38. Logan, L. K., & Weinstein, R. A. (2017).The epidemiology of carbapenem-resistant Enterobacteriaceae: The impact and evolution of a global menace. The Journal of Infectious Diseases, 215(suppl_1), S28–S36. https://doi.org/10.1093/infdis/jiw282

39. Lowman, W. (2015). Key to antimicrobial stewardship success: Surveillance by diagnostic microbiology laboratories. South African Medical Journal, 105(5), 359–360. https://doi.org/10.7196/SAMJ.9615

40. Luyt, C. E., Bréchot, N., Trouillet, J. L., & Chastre, J. (2014). Antibiotic stewardship in the intensive care unit. Critical Care, 18(5), 480. https://doi.org/10.1186/s13054-014-0480-6

41. Morel, C. M., de Kraker, M. E. A., Harbarth, S., Gastmeier, P., Heuer, O. E., Hopkins, K. L., Park, B. J., Patel, J., Plachouras, D., Srinivasan, A., Stelling, J., & Tacconelli, E. (2021). Surveillance of resistance to new antibiotics in an era of limited treatment options. Frontiers in Medicine, 8, Article 652638. https://doi.org/10.3389/fmed.2021.652638

42. Mody, L., Washer, L. L., Kaye, K. S., Gibson, K., Saint, S., Reyes, K., Cassone, M., Mantey, J., Cao, J., Altamimi, S., Perri, M., Sax, H., Chopra, V., & Zervos, M. (2019). Multidrug-resistant organisms in hospitals: What is on patient hands and in their rooms? Clinical Infectious Diseases, 69(11), 1837–1844. https://doi.org/10.1093/cid/ciz092

43. Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Hamadani, B. H. K., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0

44. Meijer, S. E., et al. (2019). Environmental stressors and antimicrobial resistance selection in hospital settings. Current Opinion in Microbiology, 51, 37–43. https://doi.org/10.1016/j.mib.2019.10.002

45. Nordmann, P., Naas, T., & Poirel, L. (2011).Global spread of carbapenemase-producing Enterobacteriaceae. Emerging Infectious Diseases, 17(10), 1791–1798. https://doi.org/10.3201/eid1710.110655

46. Naylor, N. R., Atun, R., Zhu, N., Kulasabanathan, K., Silva, S., Chatterjee, A., Knight, G. M., & Robotham, J. V. (2018).Estimating the burden of antimicrobial resistance: A systematic literature review. Antimicrobial Resistance & Infection Control, 7, 58. https://doi.org/10.1186/s13756-018-0336-y

47. Nazir, A., Nazir, A., Zuhair, V., Aman, S., Rehman Sadiq, U., Hasan, A. H., Tariq, M., Rehman, L. U., Mustapha, M. J., & Bulimeb, D. B. (2025). The global challenge of antimicrobial resistance: Mechanisms, case studies, and mitigation approaches. Health Science Reports. Wiley. https://doi.org/10.1002/hsr2.71077

48. Nelson, R. E., Hyun, D., Jezek, A., & Samore, M. H. (2022). Mortality, length of stay, and healthcare costs associated with multidrug-resistant bacterial infections among elderly hospitalized patients in the United States. Clinical Infectious Diseases, 74(6), 1070–1080. https://doi.org/10.1093/cid/ciab696

49. O’Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations. Review on Antimicrobial Resistance. https://doi.org/10.13140/RG.2.2.31697.56165

50. Palmore, T. N., & Henderson, D. K. (2013). Managing transmission of carbapenem-resistant Enterobacteriaceae in healthcare settings: a view from the trenches. Clinical Infectious Diseases, 57(11), 1593–1599. https://doi.org/10.1093/cid/cit531

51. Peacock, S. J., Parkhill, J., & Brown, N. M. (2018). Changing the paradigm for hospital outbreak detection by leading with genomic surveillance of nosocomial pathogens. Microbiology, 164(10), 1213–1219.https://doi.org/10.1099/mic.0.000700

52. Reynolds, K. A., Sexton, J. D., Garavito, F., Anderson, B., & Ivaska, J. M. (2021). Impact of a whole-room atomizing disinfection system on healthcare surface contamination, pathogen transfer, and labor efficiency. Critical Care Explorations, 3(2), e0340. https://doi.org/10.1097/CCE.0000000000000340

53. Sharma, H. K., Singh, R., Grover, A., Malik, R., Triveni, Singh, S., Lather, V., & Vijay, N. (2025).Estimating the disease burden of drug-resistant bacterial infections: Present trends and future risks. In Intech Open.https://doi.org/10.5772/intechopen.1012085

54. Stalteri Mastrangelo, R., Hajizadeh, A., Piggott, T., Loeb, M., Wilson, M., Colunga Lozano, L. E., Roldan, Y., El-Khechen, H., Miroshnychenko, A., Thomas, P., Schünemann, H. J., & Nieuwlaat, R. (2022). In-hospital macro-, meso-, and micro-drivers and interventions for antibiotic use and resistance: A rapid evidence synthesis of data from Canada and other OECD countries. Canadian Journal of Infectious Diseases and Medical Microbiology, 2022, Article 5630361. https://doi.org/10.1155/2022/5630361

55. Thakur, D., Baishya, M., Sarma, B., Bora, T. C., & Saikia, R. (2008). Antimicrobial resistance in Gram-positive and Gram-negative bacteria: Progress and challenges. In Microbial Biotechnology (pp. 349–375). New India Publishing Agency.

56. Tseng, S.-H., Lee, C.-M., Lin, T.-Y., Chang, S.-C., & Chang, F.-Y. (2011).

Emergence and spread of multidrug-resistant organisms: Think globally and act locally. Journal of Microbiology, Immunology and Infection, 44(3), 157 165,https://doi.org/10.1016/j.jmii.2011.03.001

57. Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., WHO Pathogens Priority List Working Group. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18(3), 318–327.

https://doi.org/10.1016/S1473-3099(17)30753-3

58. Tacconelli, E., et al. (2018). Surveillance for control of AMR. The Lancet Infectious Diseases, 18(3), e99–e106. https://doi.org/10.1016/S1473-3099(17)30485-1

59. van der Togt, M. H., Bakker, M., van der Lely, N., Visser, L. G., van den Broek, P. J., & Speelman, P. (2003). Epidemiology of antimicrobial resistance in a tertiary care hospital in The Netherlands. European Journal of Clinical Microbiology & Infectious Diseases, 22(5), 327–334. https://doi.org/10.1007

60. Wang, M., Wei, H., Zhao, Y., Shang, L., Di, L., Lyu, C., & Liu, J. (2019). Analysis of multidrug-resistant bacteria in 3,223 patients with hospital-acquired infections (HAI) from a tertiary general hospital in China. Bosnian Journal of Basic Medical Sciences, 19(1), 86–93. https://doi.org/10.17305/BJBMS.2018.3826

61. World Health Organization. (2018). Global antimicrobial resistance surveillance system (GLASS) report: Early implementation 2017–2018. WHO. https://doi.org/10.2471/BLT.18.213256

62. Woerther, P. L., Burdet, C., Chachaty, E., & Andremont, A. (2013).Trends in human fecal carriage of extended-spectrum β-lactamases in the community: Toward the globalization of CTX-M. Clinical Microbiology Reviews, 26(4), 744–758. https://doi.org/10.1128/CMR.00023-13

63. World Health Organization. (2014). Antimicrobial resistance: Global report on surveillance (WHO/HSE/PED/AIP/2014.2). World Health Organization. https://iris.who.int/handle/10665/112642

64. Yakob, L., Riley, T. V., Paterson, D. L., Marquess, J., & Clements, A. C. A. (2014). Assessing control bundles for Clostridium difficile: A review and mathematical model. Emerging Microbes & Infections, 3, Article e43. https://doi.org/10.1038/emi.2014.43

65. Yakob, L., Riley, T. V., Paterson, D. L., & Clements, A. C. A. (2014). Antimicrobial resistance and infection prevention and control bundles: A modelling perspective. Antimicrobial Resistance & Infection Control, 3, 8. https://doi.org/10.1186/2047-2994-38

66. Zilahi, G., Artigas, A., & Martin-Loeches, I. (2016). What’s new in multidrug-resistant pathogens in the ICU? Annals of Intensive Care, 6(1), 96. https://doi.org/10.1186/s13613-016-0199-4

Downloads

Published

2025-12-09

Issue

Section

Articles

Similar Articles

<< < 168 169 170 171 172 173 174 175 176 177 > >> 

You may also start an advanced similarity search for this article.