Advancement of Gene Editing in Millets for Improved Food Security: A Review

Authors

  • Vineeta Chattree Department of Biochemistry, Desh Bandhu college, Delhi University, Kalkaji-110019, India.
  • Shruti Yadav Department of Biochemistry, Desh Bandhu college, Delhi University, Kalkaji-110019, India.
  • Naina Chaudhary Department of Biochemistry, Desh Bandhu college, Delhi University, Kalkaji-110019, India.
  • Lavanya Arora Department of Biochemistry, Desh Bandhu college, Delhi University, Kalkaji-110019, India.

DOI:

https://doi.org/10.53555/jaz.v43iS1.5132

Keywords:

Genome Editing, Site-Specific Recombinase, Site-Specific Nuclease, CRISPR-Cas, TALENS, Qualitative trait locus (QTLs), Whole Genome Sequence (WGS).

Abstract

The editing of gene is a new breeding technology, which can modulate DNA sequences at one or more points in the DNA strand. It empowers us to remodel the expression pattern of genes in prearranged region, which accelerates new insights in functional genomics of an organism. Gene editing, harnesses various mechanisms for regulation of genes, and these are predominantly site- specific recombinase (SSR) or site-specific nuclease (SSN) system. The SSN system induces a single or double strand break in the DNA and operates endogenous repair systems in DNA. The SSR technology intervenes in the eukaryotic genome and functions by the elimination or substitution of gene, depending upon the orientation of specific sites, flanking the desired sequence. The advancement of millets using genetic engineering is trailing behind in the comparison of other crops since these cereals are grown in less-developed countries by and large. Millets possess stronger, weather resistance than other cereals as compared to rice and wheat. This review refers to the current state of affairs of genetic engineering in millets and envisions the future of gene editing to develop nutrient rich, and climate sustainable crops.

Downloads

Download data is not yet available.

References

1. Amadou, I., Gounga, M. E., and Le, G. W. (2013). Millets: nutritional composition, some health benefits and processing - a review. Emir. J. Food Agric. 25, 501–508. doi: 10.9755/ejfa. v25i7.12045

2. Aubry, S., Brown, N. J., and Hibberd, J. M. (2011). The role of proteins in C3 plants prior to their recruitment into the C4 pathway. J. Exp. Bot. 62, 3049–3059. doi: 10.1093/xb/err012

3. Anitha, S., Givens, D.I., Botha, R., Kane Potaka, J., Sulaiman, N.L.B., Tsusaka, T.W., Subramaniam, K., Rajendran, A., Parasannanavar, D.J. and Bhandari, R.K. (2021). Calcium from Finger Millet—A systematic review and meta-analysis on calcium retention, Bone resorption, and in vitro bioavailability. Sustainability. (13): 8677. https://doi.org/10.3390/su13168677

4. Anjaneyulu, Ediga., Reddy, Palle Surender., Sunita, Merla Srilakshmi |., Kishor, Polavarapu B. Kavi and Meriga, Balaji (2014). Salt tolerance and activity of antioxidative enzymes of transgenic finger millet overexpressing a vacuolar H (+)-pyrophosphatase gene (SbVPPase) from Sorghum bicolour. Journal of Plant Physiology. 171(10):789-98. doi:10.1016/j.jplph.2014.02.001.

5. Chandra, D., Chandra, S., Pallavi, and Sharma, A. K. (2016). Review of finger millet (Eleusine coracana (L.) Gaertn): a power house of health benefiting nutrients. Food Sci. Hum. Welln. 5, 149–155. doi: 10.1016/j.fshw.2016.05.004

6. Fang FQ, Qian Z, Guang MA and Jing, J.Y. (2007). Co-suppression of Si401, a maize pollen specific Zm401 homologous gene, results in aberrant anther development in foxtail millet, Euphytica 163(1):103-111, DOI:10.1007/s10681-007-9610-4

7. FAO (2012). http://www.fao.org/3/a-ap106e.pdf

8. Girgi M, Breese WA, Lörz H, Oldach K.H. (2006). Rust and downy mildew resistance in pearl millet (Pennisetum glaucum) mediated by heterologous expression of the afp gene from Aspergillus giganteus. Transgenic Res. 2006 Jun;15(3):313-24. doi: 10.1007/s11248-006-0001-8

9. Girgi, M., O'Kennedy, M.M., Morgenstern, A. (2002). Transgenic and herbicide resistant pearl millet (Pennisetum glaucum L.) R.Br. via microprojectile bombardment of scutellar tissue. Molecular Breeding 10, 243–252 (2002). https://doi.org/10.1023/A:1020558315265

10. Goldman, JJ., Hanna, WW., Fleming, G and Ozias-Akins, P. (2003). Fertile transgenic pearl millet [ Pennisetum glaucum (L.) R. Br.] plants recovered through microprojectile bombardment and phosphinothricin selection of apical meristem-, inflorescence-, and immature embryo-derived embryogenic tissues. Plant Cell Rep; 21(10):999-1009. Doi: https://doi.org/10.1007/s00299-003-0615-8

11. Gupta, S. M., Arora, S., Mirza, N., Pande, A., Lata, C and Puranik, S. (2017). Finger Millet: a “certain” crop for an “uncertain” future and a solution to food insecurity and hidden hunger under stressful environments. Front. Plant Sci. 8:643. doi: 10.3389/fpls.2017.00643

12. Hauptmann, RM., Vasil, V., Ozias-Akins, P., Tabaeizadeh, Z., Roger, S.G., Fraley, R.T., Horsch, R.B and Vasil I.K. (1988). Evaluation of selectable markers for obtaining stable transformants in the gramineae. Plant Physiol; 86(2):602-6. doi: 10.1104/pp.86.2.602.

13. Hema, R., Vemanna, R. S., Sreeramulu, S., Reddy, C. P., Senthil-Kumar, M., and Udayakumar, M. (2014). Stable expression of mtlD gene imparts multiple stress tolerance in finger millet. PLoS One 9: e99110. doi: 10.1371/journal.pone.0099110

14. Hittalmani, S., Mahesh, H. B., Shirke, M. D., Biradar, H., Uday, G., Aruna, Y. R. (2017). Genome and transcriptome sequence of finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genomics 18:465. doi: 10.1186/s12864-017-3850-z

15. Jaiswal, V., Gupta, S., Gahlaut, V., Muthamilarasa,M.,Bandyopadhyay, T., Ramchiary, N and Prasad, M. (2019) Genome-wide association study of major agronomic traits in foxtail millet (Setaria italica L.) using ddRAD sequencing. Sci Rep. https://doi.org/10.1038/s41598-019-41602-6

16. Jayasudha, B. G., Sushma, A. M., Prashantkumar, H. S., and Sashidhar, V. R. (2014). An efficient in-vitro Agrobacterium mediated transformation protocol for raising salinity tolerant transgenic finger millet (Eleusine coracana (L.) Gaertn). Plant Arch. 14, 823–829.

17. Kumar, Anil., Kumar, Rajesh., Pathak, Sanjay., Gupta, Mohan and Sood, Salej (2022). The finger Millet genome, Springer Science and Business Media LLC.

18. Kumar, A., Metwal, M., Kaur, S., Gupta, A. K., Puranik, S., Singh, S. (2016). Nutraceutical value of finger millet [Eleusine coracana (L.) Gaertn.], and their improvement using omics approaches. Front. Plant Sci. 7:934. doi: 10.3389/fpls.2016.00934

19. Kumssa, D. B., Joy, E. J. M., Ander, E. L., Watts, M. J., Young, S. D., Walker, S. (2015). Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Sci. Rep. 5:10974. doi: 10.1038/srep10974

20. Lambé, P., Mutambel, H.S., Deltour, R. (1995). Differential long-term expression and methylation of the hygromycin phosphotransferase (hph) and β-glucuronidase (GUS) genes in transgenic pearl millet (Pennisetum glaucum) callus (1998). https://doi.org/10.1016/0168-9452(95)04124-D

21. Latha, AM., Rao, KV., Reddy, T.P and Reddy, V.D. (2006). Development of transgenic pearl millet (Pennisetum glaucum (L.) R. Br.) plants resistant to downy mildew. Plant Cell Rep. 2006 Sep;25(9):927-35. doi: 10.1007/s00299-006-0141-6.

22. Liu, Yinghui., Yu, Jingjuan., Zhao, Qian., Zhu, Dengyun and Ao, Guangming (2005). Genetic transformation of millet (TetariaItalica) by Agrobacterium-mediated, Agric Biotechnol J 13(1):32-37. Doi: https://europepmc.org/article/cba/521723

23. Mahalakshmi, S., Christophe, G. S., Reddy, T.P., Rao K V and Reddy, V.D. (2006). Isolation of a cDNA clone (PcSrp) encoding serine-rich-protein from Porteresia coarctata T and its expression in yeast and finger millet (Eleusine coracana L.) affording salt tolerance. Planta.;224(2):347-59. doi: 10.1007/s00425-005-0218-4. Epub 2006 Feb 1. PMID: 16450172.

24. O’Kennedy, M.M., Burger, J. T and Botha, F. C. (2004). Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Rep 22:684–690 DOI 10.1007/s00299-003-0746-y

25. Ofori, K. F., Antoniello, S and English, M. M. (2022). Improving nutrition through biofortification–a systematic review. Front. Nutr. 9, 1043655. doi: 10.3389/fnut.2022.1043655

26. O’Kennedy, MM., Grootboom, A and Shewry, P.R. (2006). Harnessing sorghum and millet biotechnology for food and health. Journal of Cereal Science, Doi: https://doi.org/10.1016/j.jcs.2006.08.001

27. Pixley, K. V., Falck-Zepeda, J. B., Paarlberg, R. L., Phillips, P. W. B., Slamet-Loedin, I. H and Dhugga, K. S. (2022). Genome-edited crops for improved food security of smallholder farmers. Nat. Genet. 54, 364–367. doi: 10.1038/s41588-022-01046

28. Pudake, Ramesh N., Solanke, Amol Kumar U., Sevanthi, Amitha Mithra and Kumar, Rajendra P(2022.) Omics of Climate Resilient in Small Millets, Springer Science and Business Media LLC.

29. S. Antony Ceasar, T. Maharajan, T. P. Ajeesh Krishna, M. Ramakrishnan, G. Victor Roch, Lakkakula, Satish and Savarimuthu, Ignacimuthu (2018). Finger Millet [Eleusine coracana (L.) Gaertn.] Improvement: Current Status and Future Interventions of Whole Genome Sequence. doi: 10.3389/fpls.2018.01054

30. Sehgal, D., Skot, L., Singh, R., Srivastava, R. K., Das, S. P and Taunk, J. (2015). Exploring potential of pearl -+3. millet germplasm association panel for association mapping of drought tolerance traits. PloS One 10, e0122165. doi: 10.1371/journal.pone.0122165

31. Rasika, A., Chavan, S.M., Gopi, Sravya and Prathapan, K. (2024). Review Paper on Millets: Production, Nutrient, Processing and Food Products for Health and Sustainability. International Journal of Environment, Agriculture and Biotechnology. 9, 3.

32. Taylor, M.G and Vasil, I. K. (1991). Histology of, and physical factors affecting, transient GUS expression in pearl millet (Pennisetum glaucum (L.) R. Br.) embryos following microprojectile bombardment, 120–125 (1991). https://doi.org/10.1007/BF00232041

33. Taylor, M.G., Vasil, V. and Vasil, I.K. (1993). Enhanced GUS gene expression in cereal/grass cell suspensions and immature embryos using the maize uhiquitin-based plasmid pAHC25, 491–495 (1993). https://doi.org/10.1007/BF00236093

34. Tirthankar, Bandyopadhyay., Mehanathan, Muthamilarasan and Prasad, Manoj (2017). Millets for Next Generation Climate-Smart Agriculture, Front. Plant Sci., 2017.Sec. Plant Breeding, Doi; https://doi.org/10.3389/fpls.2017.01266

35. Vetriventhan, M., Azevedo, V.C.R and Upadhyaya, H.D. (2020). Genetic and genomic resources, and breeding for accelerating improvement of small millets: current status and future interventions. Nucleus 63, 217–239. https://doi.org/10.1007/s13237-020-00322-3.

36. V. Edwin, Hillary and S. Antony Ceasar (2019). Application of CRISPR/Cas9 Genome Editing System in Cereal Crops. the Open Biotechnology Journal 13(1):173-179 DOI:10.2174/187407070191301017

37. Yamunarani, R., Govind, G., Ramegowda, V., Thammegowda, H. V., and Guligowda, S. A. (2016). Genetic diversity for grain Zn concentration in finger millet genotypes: Potential for improving human Zn nutrition. Crop J. 4, 229–234. doi: 10.1016/j.cj.2015.12.001

38. Yadav, R.S., Sehgal, D and Vadez, V.(2011). Using genetic mapping and genomic approaches in understanding and improving drought tolerance in pearl millet. Journal of Exp Bot. 62, (2):397-408.

39. Zohary, D., and Hopf, M. (2000). Domestication of Plants in the Old World: the Origin and Spread of Cultivated Plants in West Asia, Europe, and the Nile Valley. Third edition: Oxford University Press.

Downloads

Published

2022-12-29

Issue

Section

Articles

Similar Articles

<< < 45 46 47 48 49 50 

You may also start an advanced similarity search for this article.