Food and Feeding Habits of the African Rainbow Lizard (Agama agama, Linnaeus, 1758) in Selected Sites of a University Community
DOI:
https://doi.org/10.53555/jaz.v43iS1.5107Keywords:
feeding, habits, Agama agama, University CommunityAbstract
Various factors, including habitat, season, prey availability, body size, and evolutionary adaptations, influence lizard feeding preferences. In this study, we examined the dietary composition and morphometric characteristics of Rainbow Lizards (Agama agama) from four different sites. The collected specimens' guts were dissected longitudinally for food analysis based on sex and site. It was observed that Site 1 had the highest number of specimens (31.43%), followed by Site 2 (25.71%), Site 4 (22.86%), and Site 3 (20%). The sex distribution revealed that male specimens accounted for 54.29% of the population, while females comprised 45.71%. Morphometric measurements indicated maximum and minimum body lengths of 40.00 cm and 14.20 cm, respectively, with males exhibiting larger dimensions. Body weight ranged from 28.42 g to 73.10 g, and head and tail lengths varied between sexes. Gut analysis indicated that insects were the dominant food source, followed by plant matter and non-food items like stones and sand. Chi-square analysis revealed no significant association (p> 0.05) between food content and sex. Both ANOVA and Mann-Whitney U-tests indicated no significant differences (p > 0.05) in food content, sex distribution, and lizard abundance across sites. Correlation analysis showed a significant positive relationship (p < 0.05) between female body weight and female food content weight, as well as a stronger correlation (p < 0.01) between female body weight and plant food weight. These findings provide insights into the feeding patterns and body characteristics of A. agama across different environments, highlighting the lizards' exploration of various food items.
Downloads
References
Abu Baker, M. A., Katbeh-Bader, A. A., Ghlelat, A. A., Disi, A. M., & Amr, Z. S. (2021). Diet and food niche relationships of lizard assemblages in Jordan. Herpetological Conservation and Biology, 16(1), 117–127.
2. Biaggini, M., & Corti, C. (2021). Occurrence of lizards in agricultural land and implications for conservation. Herpetological Journal, 31(2), 77–84. https://doi.org/10.33256/31.2.7784
3. Bijay-Singh, & Craswell, E. (2021). Fertilisers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences, 3(4), 1–24. https://doi.org/10.1007/s42452-021-04521-8
4. Buckley, L. B., & Kingsolver, J. G. (2021). Evolution of Thermal Sensitivity in Changing and Variable Climates. Annual Review of Ecology, Evolution, and Systematics, 52, 563–586. https://doi.org/10.1146/annurev-ecolsys-011521-102856
5. Chakravorty, J., Meyer-Rochow, V. B., & Ghosh, S. (2011). Vertebrates are used for medicinal purposes by members of the Nyishi and Galo tribes in Arunachal Pradesh (North-East India). Journal of Ethnobiology and Ethnomedicine, 7, 1–14. https://doi.org/10.1186/1746-4269-7-13
6. Christel, C. M., DeNardo, D. F., & Secor, S. M. (2007). Metabolic and digestive response to food ingestion in a binge-feeding lizard, the Gila monster (Heloderma suspectum). Journal of Experimental Biology, 210(19), 3430–3439. https://doi.org/10.1242/jeb.004820
7. Dehghani, R. (2024). Lizards : Poisonous animals or biological pest control agents ? 11(3), 143–145.
8. Enge, K. E. M. E., Rysko, K. E. L. K., & Alley, B. R. L. T. (2000). Distribution and Ecology of the Introduced African Rainbow Lizard, Agama agama Africana ( Sauria : Agamidae ), in Florida. Florida Scientist, September, 303–310.
9. French, S. S., & Moore, M. C. (2008). Immune function varies with reproductive stage and context in female and male tree lizards, Urosaurus ornatus. General and Comparative Endocrinology, 155(1), 148–156. https://doi.org/10.1016/j.ygcen.2007.04.007
10. Gomides, S. C., Ribeiro, L. B., Peters, V. M., & Sousa, B. M. (2013). Feeding and reproduction ecology of the lizard Tropidurus torquatus (Squamata: Tropiduridae) in a rock outcrop area in southeastern Brazil. Revista Chilena de Historia Natural, 86(2), 137-151.
11. Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1), 1–9.
12. Hawlena, D., Saltz, D., Abramsky, Z., & Bouskila, A. (2010). Ecological Trap for Desert Lizards Caused by Anthropogenic Changes in Habitat Structure that Favor Predator Activity. Conservation Biology, 24(3), 803–809. https://doi.org/10.1111/j.1523-1739.2010.01477.x
13. Herrel, A., Vanhooydonck, B., & Van Damme, R. (2004). Omnivory in lacertid lizards: adaptive evolution or constraint?. Journal of evolutionary biology, 17(5), 974-984.
14. Kondrakiewicz, K., Kostecki, M., Szadzinska, W., & Knapska, E. (2019). Ecological validity of social interaction tests in rats and mice. Genes, Brain and Behavior, 11(1), 1–14. http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng-8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.doi.org/10.1016/j.regsciurbeco.2008.06.005%0Ahttps://www.researchgate.net/publication/305320484_SISTEM_PEMBETUNGAN_TERPUSAT_STRATEGI_MELESTARI
15. Lal, C. N., & Nadim, C. (2021). Factors responsible for global decline of reptilian population: A review. Intern. J. Zool. Investig, 7, 549-556.
16. Leenders, T. (2019). Reptiles of Costa Rica: a field guide. Comstock Publishing Associates.
17. Mediannikov, O., Trape, S., & Trape, J. (2012). A molecular study of the Genus Agama (Squamata: Agamidae) in West Africa, with description of two new species and a review of the taxonomy, geographic distribution, and ecology of currently recognised species. Russian Journal of Herpetology, 19(2), 115–142.
18. Melstrom, K. M. (2017). The relationship between diet and tooth complexity in living dentigerous saurians. Journal of Morphology, 278(4), 500–522. https://doi.org/10.1002/jmor.20645
19. Monagan, I. V., Morris, J. R., Davis Rabosky, A. R., Perfecto, I., & Vandermeer, J. (2017). Anolis lizards as biocontrol agents in mainland and island agroecosystems. Ecology and Evolution, 7(7), 2193–2203. https://doi.org/10.1002/ece3.2806
20. Murphy, J. B., & Hanken, J. (2018). Why are there not more agamid lizards in zoo collections?. Herpetological Review.
21. Mutengu, C., Mhlanga, W., & Mupangwa, J. F. (2018). Occurrence of clinostomum metacercariae in oreochromis mossambicus from Mashoko Dam, Masvingo Province, Zimbabwe. Scientifica, 2018. https://doi.org/10.1155/2018/9565049
22. Obayemi, O.E. and Komolafe O.O. (2019): Histopathological Changes in the Gills, Fillet and Liver of Parachanna obscura in an Abandoned Gold Mine Reservoir of Igun and Opa Reservoir, Nigeria. American Journal of Biology and Life Sciences, 7(1): 1-8.
23. O’Grady, S. P., Morando, M., Avila, L., & Dearing, M. D. (2005). Correlating diet and digestive tract specialisation: Examples from the lizard family Liolaemidae. Zoology, 108(3), 201–210. https://doi.org/10.1016/j.zool.2005.06.002
24. Ofori, Martey, P., & Attuquayefio, D. (2018). Observations of the west african rainbow lizard, Agama picticauda peters, 1877, from Ghana feeding on bread. Herpetology Notes, 11(November), 955–957.
25. Ogundimu, O. A. (2019). Comparative assessment of morphometric parameters of some common lizards. Journal of Research in Forestry, Wildlife and …, 11(3). https://www.ajol.info/index.php/jrfwe/article/view/190252%0Ahttps://www.ajol.info/index.php/jrfwe/article/view/190252/179472
26. Olsson, M., Shine, R., Wapstra, E., Ujvari, B., & Madsen, T. (2002). Sexual dimorphism in lizard body shape: The roles of sexual selection and fecundity selection. Evolution, 56(7), 1538–1542. https://doi.org/10.1111/j.0014-3820.2002.tb01464.x
27. Pandav, B. N., Shanbhag, B. A., & Saidapur, S. K. (2010). Growth patterns and reproductive strategies in the lizard, Calotes versicolor, raised in captivity. Acta Herpetologica, 5(2), 131–142.
28. Perez-Martinez, C. A., Riley, J. L., & Whiting, M. J. (2020). Uncovering the function of an enigmatic display: Antipredator behaviour in the iconic Australian frillneck lizard. Biological Journal of the Linnean Society, 129(2), 425–438. https://doi.org/10.1093/biolinnean/blz176
29. Rabiu, S. (2019). Dietary resource partitioning among age-sex classes of Agama agama (Squamata: Agamidae) assessed by fecal pellet analysis. Phyllomedusa, 18(1), 63–75. https://doi.org/10.11606/issn.2316-9079.v18i1p63-75
30. Rabiu, S. (2020). Dimensions of home range structure of Agama agamain the Savanna region of Nigeria. Herpetological Conservation and Biology, 15(2), 318–324.
31. Santamaría, S., Enoksen, C. A., Olesen, J. M., Tavecchia, G., Rotger, A., Igual, J. M., & Traveset, A. (2020). Diet composition of the lizard Podarcis lilfordi (Lacertidae) on two small islands: an individual-resource network approach. Current Zoology, 66(1), 39–49. https://doi.org/10.1093/cz/zoz028
32. Solís, L., & Casas, A. (2019). Cuicatec ethnozoology: traditional knowledge, use, and management of fauna by people of San Lorenzo Pápalo, Oaxaca, Mexico. Journal of Ethnobiology and Ethnomedicine, 15(1), 1–16. https://doi.org/10.1186/s13002-019-0340-1
33. Srichairat, N., Taksintum, W., & Chumnanpuen, P. (2018). Gross morphological structure of the digestive system in water monitor lizard varanus salvator (Squamata: Varanidae). Walailak Journal of Science and Technology, 15(3), 245–253. https://doi.org/10.48048/wjst.2018.3356
34. Tan, W. C., Herrel, A., & Measey, J. (2020). Dietary observations of four Southern African agamid lizards (Agamidae). Herpetological Conservation and Biology, 15(1), 69–78.
35. Valencia-Aguilar, A., Cortés-Gómez, A. M., & Ruiz-Agudelo, C. A. (2013). Ecosystem services provided by amphibians and reptiles in Neotropical ecosystems. International Journal of Biodiversity Science, Ecosystem Services and Management, 9(3), 257–272. https://doi.org/10.1080/21513732.2013.821168
36. Villa, A., Delfino, M. Fossil lizards and worm lizards (Reptilia, Squamata) from the Neogene and Quaternary of Europe: an overview. Swiss J Palaeontol 138, 177–211 (2019). https://doi.org/10.1007/s13358-018-0172-y
37. Verwaijen, D., & Van Damme, R. (2007). Does foraging mode mould morphology in lacertid lizards? Journal of Evolutionary Biology, 20(5), 1950–1961. https://doi.org/10.1111/j.1420-9101.2007.01367.x
38. Villa, A., & Delfino, M. (2019). Fossil lizards and worm lizards (Reptilia, Squamata) from the Neogene and Quaternary of Europe: an overview. In Swiss Journal of Palaeontology (Vol. 138, Issue 2). Springer International Publishing. https://doi.org/10.1007/s13358-018-0172-y
39. Vitt, L. J., & Caldwell, J. P. (2014). Chapter 21 - Squamates — Part I . Lizards. In Herpetology (Fourth Edition) An Introductory Biology of Amphibians and Reptiles (Issues 555–596).
40. Wilson, S. (2012). Australian lizards: a natural history. Csiro Publishing.
41. Yang, Y., Lin, Y., & Shi, L. (2021). The effect of lizards on the dispersal and germination of Capparis spinosa (Capparaceae). PLoS ONE, 16(2 Febuary), 1–16. https://doi.org/10.1371/journal.pone.0247585
42. Znari, M., & El Mouden, E. (1997). Seasonal changes in the diet of adult and juvenile Agama impalearis (Lacertilia: Agamidae) in the central Jbilet mountains, Morocco. Journal of Arid Environments, 37(2), 403–412. https://doi.org/10.1006/jare.1997.0271
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Mary Ebun Ajibola, Taiwo Omotayo Omoshehin, Oluwadamilare Emmanuel Obayemi, Abimbola Faith Oyejola

This work is licensed under a Creative Commons Attribution 4.0 International License.