Eco-Friendly Larvicidal Potential Of Annona Squamosa Ethanolic Leaf Extract Against Anopheles Subpictus

Authors

  • Y.S. Santhi Pon Indira

DOI:

https://doi.org/10.53555/jaz.v43iS1.4922

Keywords:

Annona squamosa, Natural larvicides, Ethanol extract, subpictus

Abstract

The botanical insecticides are harmless to the environment and living organisms. Anopheles subpictus considers crucial research as it searches for innovative solutions to control the disease-carrying vector. Experiments were done in the laboratory to evaluate the larvicidal efficience of ethanolic leaf extract of Annona squamosa. The primary metric used to assess the extract's effectiveness was the documented mortality rate of the treated larvae. The median lethal doses (LC50) were (139.117and 113.162) ppm at 24, and 48 hours respectively. These outcomes conclude the effectiveness of A. subpictus ethanolic extract as bioinsecticides. Hence, should be incorporated into the integrated pest management strategies as an ecofriendly botanical extract.

Downloads

Download data is not yet available.

Author Biography

Y.S. Santhi Pon Indira

Associate Professor of Zoology, Pope’s College, Sawyerpuram – 628251

References

Abdel-Shafi, I.; Shoeib, E.; Attia, S; Rubio, J.; Edmardash, Y. and Badry, A. (2016). Mosquito identification and molecular xenomonitoring of lymphatic filariasis in selected endemic areas in Giza and Qualioubiya governorates, Egypt. J Egypt Soc Parasitol., 46(1):87-94.

Abdelkader, A. F. and Nosair, H. R.(2018) Regulations of volatile oil production in irrigated ornamental plants with mannitol-induced short-term drought stress. Al-Mehmadi, R.M. and Al-Khalaf, A.A. (2010). Larvicidal and histological effects of Melia azedarach extract on Culex quinquefasciatus Say larvae (Diptera: Culicidae). J. King Saud Univ. Sci., 22:77-85.

AlMehmadi, R.M. (2011). Larvicidal, Histopathological and Ultra-structure Studies of Matricaria chamomilla Extracts Against the Rift Valley Fever Mosquito Culex quinquefasciatus (Culicidae: Diptera). J. of Entomol., 8(1):63-72.

Akhtar, Y.; Yeoung, Y.-R. and Isman M. B. (2008) Comparative bioactivity of selected extracts from Meliaceae and some commercial botanical insecticides against two noctuid caterpillars, Trichoplusia ni and Pseudaletia unipuncta. Phytochemistry Reviews 7: 77–88.

Akhtar, Y.; Isman, M.B.; Lee, C.-H.; Lee, S.-G. and Lee H.-S. (2012) Toxicity of quinones against two-spotted spider mite and three species of aphids in laboratory and greenhouse conditions. Ind Crops Prod., 37: 536–541.

Barakat, D. A. (2011). Insecticidal and antifeedant activities and chemical composition of Casimiroa edulis La Llave & Lex (Rutaceae) leaf extract and its fractions against Spodoptera littoralis larvae. Aust. J. Basic Appl. Sci., 5(9): 693-703.

Bassal, R.; Shohat, T.; Kaufman, Z.; Mannasse, B.; Shinar, E.; Amichay, D.; Barak, M.; Ben-Dor, A; Bar-Haim, A.; Cohan, D.; Mendelson, E. and Lustig, Y. (2017). The sero prevalence of West Nile Virus in Israel: A nationwide cross-sectional study. PLOS One, 12(6):1-10.

Beckley, L.; Gorder, K.; Dettenmaier, E.; Rivera-Duarte, I. and McHugh, T. (2014). On site Gas Chromatography/Mass Spectrometry (GC/MS) analysis to stream line vapor intrusion investigations. J. Environ. Forens. 15 (3): 2234–2243.

Benelli, G. and Pavela, R. (2018). “Beyond Mosquitoes-Essential oil toxicity and repellency against bloodsucking insects,” Ind Crops Prod., 117: 382–392.

Bonner, A. and Alavanja, M. (2017). Pesticides, Human Health, and Food Security. Food Energy Secure., 6(3): 89-93.

Bowers, W.S.; Sener, B.; Evans, P.H.; Bingol, F. and Erdogan, I. (1995) Activity of Turkish medicinal plants against mosquitoes Aedes aegypti and Anopheles gambiae. Inst Sci Appl 16(3/4): 339–342.

Burkii, H. M. (1985). The useful plants of West Tropical Africa. JSTOR, 3: 873-880.

Chancey, C.; Grinev, A.; Volkova, E. and Rios, M. (2015). The Global Ecology and epidemiology of West Nile Virus. Biomed Res. Int., 1-20.

Crobsy, D.G. (1971). Minor insecticides of plant origin. In: Jacobson M, Crosby DG (eds) Naturally occurring insecticides. Marcel Dekker, New York, 171–239.

Dodson, B.; Andrews, E.; Turell, M. and Rasgon, J. (2017). Wolbachia effects on Rift Valley Fever Virus infection in Culex tarsalis mosquitoes. PLOS Negl. Trop. Dis., 11(10): 1-12.

El-Naggar, A.; Elbanna, S.; Kaiser, M. and Gabre, R. (2017). Mosquito larval habitat mapping remote sensing and GIS for monitoring the filarial infection regions in Alkorin village, Sharkia Governorate (Egypt). Int. J. Mosq. Res., 4(4): 135-139.

El-Zayyat, E.; Solimn, M.; Elleboudy, N. and Ofaa, S. (2017). Bioefficacy of some Egyptian aromatic plants on Culex pipiens (Diptera: Culicidae) adults and larvae. J ArthropodBorne Dis., 11(1): 147-155.

Fish., 25(2): 139 – 161 Finney, D. (1971). Probit analysis Third edition. Cambridge University. Press. p 333.

Gusmão, D.S.; Páscoa, V.; Mathias, L.; Vieira, I.J.C.; Braz-Filho, R. and Lemos, F.J.A. (2002) Derris (Lonchocarpus) urucu (Leguminosae) Extract Modifies the Peritrophic Matrix Structure of Aedes aegypti (Diptera: Culicidae). Mem. Inst. Oswaldo Cruz., 97(3):371-375.

Hassanali, A. and Lwande, W. (1989) Antipest secondary metabolites from African plants. ACS Symposium Series 387: 78–94.

Jitendra, K.; Nitin, K. and Kulkarni, D. K. (2009). Plant-based pesticides for control of Helicoverpa armigera on Cucumis; Asian J. Agric. Res, 13 (4): 327-332.

Khalaf, A.; Hussein, K. and Shoukry, K. (2009). Biocidal activity of two botanical volatile oils against the larvae of Synthesiomyia nudiseta (Wulp) (Diptera: Muscidae). Egypt. Acad. J. Biol. Sci., 2 (1): 89 – 101.

Khalequzzaman, M., and Sultana, S. (2006). Insecticidal activity of Annona squamosa L. seed extracts against the red flour beetle, Tribolium castaneum (Herbst). J. Biosci., 14: 107- 112.

Killeen, G.; Masalu, J.; Chinula, D.; Fotakis, E.; Kavishe, D.; Malone, D. and Okumu, F. (2017). Control of malaria vector mosquitoes by insecticide-treated combinations of window screens and Eave baffles. Emerg. Infect. Dis, 23 (5):782-789.

Mahmoud, D.M.; Abd El-Bar, M.M.; Salem, D.A.M. and Rady, M.H. (2019) Larvicidal potential and ultrastructural changes induced after treatment of Culex pipiens L. (Diptera: Culicidae) larvae with some botanical extracted oils Int. J. Mosq. Res., 6(4): 01-09.

Michałowicz, J. and Duda, W. (2006). Phenols – Sources and Toxicity. Polish J. of Environ. Stud., 16 (3): 347-362.

Mohan, S.; Ma, P.W.K.; Pechan, T.; Bassford, E.R.; Williams, W.P. and Luthe, D.S. (2006) Degradation of the S. frugiperda peritrophic matrix by an inducible maize cysteine protease. J. Insect Physiol.; 52: 21-28.

Momeni, J.; Djoulde, R. D.; Akam, M. T. and Kimbu, S. F. (2005) Chemical constituents and antibacterial activities of the stem bark extracts of Ricinodendron heudelotii (Euphorbiaceae). Indian J. Pharm. Sci., 67: 386–390.

Nawrot, J.; Harmstha, J.; Kostova, I. and Ognyanov I. (1988) Antifeedant activity of rotenone and some derivatives towards selected insect storage pests. Biochem. Syst. Ecol. 7: 55–57.

Nwaehujor, C.O.; Ode, J.O.; Nwinyi, F.C. and Madubuike, S.A. (2013). Anticoagulant and antioxidant activities of Dracaena arborea leaves (Wild) American. J Biomed Res. 1:86–92.

https://doi.org/10.12691/ajbr-1-4-4. Okonkwo, C.O. (2014). Anti-hemolytic potentials of the ethanolic leaf extract of Dracaena Arborea on Zidovudine-induced hemolysis in Wistar Albino Rats. Int J Sci Technol. 2:142–146.

Okunji, C. O.; Iwu, M. M.; Jackson, J. E., and Tally, J. D. (1996). Biological activity of saponins from two Dracaena species. In Saponins Used in Traditional and Modern Medicine. 415-428.

Springer, Boston, MA. Prosper, C. B.; Riccardo, M.; Marcello, N. and Lamberto, T. (2016). Larvicidal activity of steroidal saponins from Dracaena arborea on Aedes albopictu. Curr. Pharm. Biotechno.,1036-1042.

Reinbold, C.; Gildow, F.E.; Herrbac, E.; Ziegler-Graff, V.; Gonc_alves, M.C and van den Heuvel, J.F. (2001). Studies on the role of the minor capsid protein in transport of Beet western yellows virus through Myzus persicae. Journal of General Virology, 82:1995- 2007.

Rembold, H. (1994) Controlling locusts with plant chemicals, In New Trends in Locust Control. GTZ, Eschborn, 41–49.

Samuel, M.; Oliver, S.V.; Coetzee, M. and Brooke, B.D. (2016). The larvicidal effects of black pepper (Piper nigrum L.) and piperine against insecticide-resistant and susceptible strains of Anopheles malaria vector mosquitoes. Parasites & Vectors., 9:238.

Senthil, N.S. and Kalaivani, K. (2005). Efficacy of Nucleo polyhedron virus (NPV) and Azadirachtin on Spodoptera littura Fabricius (Lepidoptera: Noctuidae). Biol. Control., 34: 93-98.

Shaalan, E.A.S.; Canyonb, D.; Younesc, M.W.F.; Abdel-Wahaba, H.and Mansoura, A.H. (2005). A review of botanical phytochemicals with mosquitocidal potential. Environ Int., 31:1149–1166.

Udo, I. O. (2008a). Efficacy of Candlewood Zanthoxylum Xanthoxyloides (Lam) for the control of three stored product pests. M. Phil.Thesis, University of Ghana, Legion. 79.

Udo, I.O. (2013). Phytochemical screening of Dracaena Arborea (Asparagaceae) for insecticidal activity in the control of Sitophilus zeamais (Coleoptera: Curculionidae) and callosobruchus maculates (Coleoptera: Chrysomelidae). Int. J. Trop. Insect Sci., 33 (02): 136-143.

Udo, I.O.; Obeng-Ofori, D. and Owusu, E.O. (2004) Biological effect of methanol extracts of candlewood Zanthoxylum xanthoxyloides (Lam.) against infestation of stored maize and cowpea by three stored product beetles. Int. j. pure appl. sci. technol. 10: 227–233.

Udo, I. O.; Epidi, T. T. and Osakwe, J.A. (2011). Comparative efficacy of root, bark, and leaf powders of Dracaena arborea for the control of two storage insect pests. J. Sci. Res. Essay, 6 (7): 1473-1478.

Ukoroije, R. B. ; Bawo, D. S. and EAS, J. N. (2019). Biocidal Activity of Leaf Powder and Extract of Dracaena Arborea on the Adult Cockroach Periplaneta Americana (Dictyoptera: Blatellidae). Food Sci., 1(5): 108-114.

WHO (1981). Instructions for determining susceptibility or resistance of mosquito larvae to insecticides. WHO/VBC-; 81:807.

WHO (2005). Guidelines for laboratory and field testing of mosquito larvicides (WHO/ CDS/ WHOPES/ GCDPP/ 2005.13).

Wink, M. (1993) Production and application of phytochemicals from an agricultural perspective, In Phytochemistry and Agriculture. Clarendon Press, Oxford.171-213.

Younes, N.; Abul- Dahab, F.; Assar, A. and Hanna, M. (1999). Histopathological studies on the effect of some botanical extracts on the cotton leaf worm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) II- effects of the integument, the midgut, and fat body. 2nd Science Conference On the role of science in the development of Egyptian society and Environment, Zagazig Univ., Fac. Sci, Benha, pp.113- 129.

Zhao, X.; Wei, L.; Julson, J.; Gu, Z, and Cao, Y. (2015). Catalytic cracking of inedible camelina oils to hydrocarbon fuels over bifunctional Zn/ZSM-5 catalysts. Kor. J. Chem. Engin., 32(8): 1528-1541.

Downloads

Published

2022-12-20

Issue

Section

Articles

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.