A Concise Review On Pharmaceutical Cocrystals: An Approach Of Solubility Enhancement Of Drug

Main Article Content

Baskar Bangar
Jagdish Kumar Arun
Adhikrao Yadav

Abstract

The poor aqueous solubility of drugs presents significant challenges in pharmaceutical development and clinical efficacy. Understanding the underlying factors contributing to poor solubility is essential for the design of effective drug delivery systems and formulations to improve therapeutic outcomes. The solubility of a drug in water is a critical factor influencing its absorption, distribution, metabolism, and excretion (ADME) within the body. However, many drugs exhibit poor aqueous solubility, posing significant challenges in their formulation and therapeutic efficacy. Cocrystals represent a promising approach in pharmaceutical science to address the challenge of poor drug solubility. These crystalline structures consist of two or more molecular entities, typically a drug molecule and a coformer, held together by non-covalent interactions. By altering the solid-state properties of the drug, cocrystallization offers a pathway to enhance solubility, stability, and bioavailability, thereby improving therapeutic outcomes. Thus, present concise review highlights use of cocrystals in solubility enhancement of drug.  

Downloads

Download data is not yet available.

Article Details

How to Cite
Baskar Bangar, Jagdish Kumar Arun, & Adhikrao Yadav. (2022). A Concise Review On Pharmaceutical Cocrystals: An Approach Of Solubility Enhancement Of Drug. Journal of Advanced Zoology, 43(1), 1000–1009. https://doi.org/10.53555/jaz.v43i1.4867
Section
Articles
Author Biographies

Baskar Bangar

School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India.

Jagdish Kumar Arun

School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India.

Adhikrao Yadav

KCT’s, Krishna College of Pharmacy, Karad, Maharashtra, India.

References

Aakeroy, C. B, Seddon K. R, The Hydrogen Bond and Crystal Engineering. Chem. Soc. Rev. 1993, 22 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.), 397–407.

Aakeröy, C. B. Constructing Co-Crystals with Molecular Sense and Supramolecular Sensibility. Acta Crystallogr. Sect. A Found. Crystallogr. 2006, 62 (a1), s75–s75.

Aakeröy, C. B, Hussain, I, Desper, J. 2-Acetaminopyridine: A Highly Effective Cocrystallizing Agent. Cryst. Growth Des. 2006, 6 (2), 474–480.

Aakeröy, C. B, Forbes S, Desper J. Using Co-crystals to Systematically Modulate Aqueous Solubility and Melting Behavior of an Anticancer Drug. J. Am. Chem. Soc. 2009, 131 (47), 17048–17049.

Alexander T Florence, D. A. Physicochemical Principles of Pharmacy; 2013; Vol. 53.

Atay T, Dikmen N, Aboul-enein H. Y Improvement of Water Solubility and in Vitro Dissolution Rate of Gliclazide by Complexation with B -Cyclodextrin 1. 2000.

Bai G, Wang Y, Armenante P. M. Velocity Profiles and Shear Strain Rate Variability in the USP Dissolution Testing Apparatus 2 at Different Impeller Agitation Speeds. Int. J. Pharm. 2011, 403 (1-2), 1–14.

Bak A, Gore A, Yanez E, Stanton M, Tufekcic S, Syed R, Akrami A, Rose M, Surapaneni S, Bostick T et al. The Co-Crystal Approach to Improve the Exposure of a Water-Insoluble Compound: AMC 517 Sorbic Acid Co-Crystal Characterizations and Pharmacokinetics. J. Pharm. Sci. 2008, 97 (9), 3942–3956.

Biswal S, Sahoo J, Murthy P. N, Giradkar R. P, Avari J. G. Enhancement of Dissolution Rate of Gliclazide Using Solid Dispersions with Polyethylene Glycol 6000. AAPS PharmSciTech 2008, 9 (2), 563–570.

Blagden N, de Matas M, Gavan P. T, York P. Crystal Engineering of Active Pharmaceutical Ingredients to Improve Solubility and Dissolution Rates. Adv. Drug Deliv. Rev. 2007, 59 (7), 617–630.

Chadha R, Arora P, Saini A, Bhandari S. Crystal Forms of Anti-HIV Drugs: Role of Recrystallization. Recrystallization 2012, 18.

Chadha R, Rani D, Goyal P. Novel Cocrystals of Gliclazide: Characterization and Evaluation. Cryst Eng Comm 2016. 322-330.

Childs S. L, Chyall L. J, Dunlap J. T, Smolenskaya V. N, Stahly B. C, Stahly G. P, Kent A. V, Lafayette W, Road B. Crystal Engineering Approach To Forming Co-crystals of Amine Hydrochlorides with Organic Acids . Molecular Complexes of Fluoxetine Hydrochloride with Benzoic, Succinic, and Fumaric Acids. 2004, No. 2, 13335–13342.

Childs S. L, Rodríguez-Hornedo, N, Reddy L. S, Jayasankar A, Maheshwari C, McCausland L, Shipplett R, Stahly B. C. Screening Strategies Based on Solubility and Solution Composition Generate Pharmaceutically Acceptable Co-crystals of Carbamazepine. CrystEngComm 2008, 10 (7), 856–864.

Desai H, Rao L, Amin P. Carbamazepine Co-crystals by Solvent Evaporation Technique: Formulation and Characterization Studies. 2014, 4 (February).

Devarajan P. V, Sonavane G. S. Preparation and in Vitro/in Vivo Evaluation of Gliclazide Loaded Eudragit Nanoparticles as a Sustained Release Carriers. Drug Dev. Ind. Pharm. 2007, 33 (2), 101–111.

Frijlink H. W, Eissens A. C, Hefting N. R, Poelstra K, Lerk C. F, Meijer D. K. F. The Effect of Parenterally Administered Cyclodextrins on Cholesterol Levels in the Rat. Pharm. Res. An off. J. Am. Assoc. Pharm. Sci. 1991, 8 (1), 9–16.

Fukte S. R, Wagh M. P, Rawat S. Co-former Selection: An Important Tool in Co-crystal Formation. Int. J. Pharm. Pharm. Sci. 2014, 6 (7), 9–14.

Galek P, Pidcock E, Wood P. CSD Solid Form Suite: Addressing Key Issues in Solid State Development. Ccdc 2011, 1–16.

Giovanna Bruni, mariarosa Maietts, Lauretta Maggi, Pi. M. An Experimental and Theoretical Investigation of Loperamide Hydrochloride−Glutaric Acid Cocrystals. J. Phys. Chem. 2013, No. 117, 8113–8121.

Good D. J, Nair R. H. Solubility Advantage of Pharmaceutical Cocrystals. Cryst. Growth Des. 2009, 9 (5), 2252–2264.

Goud N. R, Gangavaram S, Suresh K., Pal S, Manjunatha S. G, Nambiar S, Nangia A. Novel Furosemide Co-crystals and Selection of High Solubility Drug Forms. J. Pharm. Sci. 2012, 101 (2), 664–680.

Hickey M. B, Peterson M. L, Scoppettuolo L. A, Morrisette S. L, Vetter A, Guzmán H, Remenar, J. F, Zhang Z, Tawa M. D, Haley S et al. Performance Comparison of a Co-Crystal of Carbamazepine with Marketed Product. Eur. J. Pharm. Biopharm. 2007, 67 (1), 112–119.

Jung M. S, Kim J. S, Kim M. S, Alhalaweh A, Cho W, Hwang S. J, Velaga S. P. Bioavailability of Indomethacin-Saccharin Co-crystals. J. Pharm. Pharmacol. 2010, 62 (11), 1560–1568.

Khadka P, Ro J, Kim H, Kim I, Kim J. T, Kim H, Cho J. M, Yun G, Lee J. Pharmaceutical Particle Technologies: An Approach to Improve Drug Solubility, Dissolution and Bioavailability. Asian J. Pharm. Sci. 2014, 9 (6), 304–316.

Li Z, Matzger A. J. Influence of Co-former Stoichiometric Ratio on Pharmaceutical Co-crystal Dissolution: Three Co-crystals of Carbamazepine/4- Aminobenzoic Acid. Mol. Pharm. 2016, 13 (3), 990–995.

Mcnamara D. P, Childs S. L, Giordano J, Iarriccio A, Cassidy J, Shet M. S, Mannion R, Donnell E. O, Park A Use of a Glutaric Acid Co-crystal to Improve Oral Bioavailability of a Low Solubility API. 2006, 23 (8), 1888–1897.

Modi S. R, Dantuluri A. K. R, Perumalla, S. R.; Sun, C. C.; Bansal, A. K. Effect of Crystal Habit on Intrinsic Dissolution Behavior of Celecoxib due to Differential Wettability. Cryst. Growth Des. 2014, 14 (10), 5283–5292.

Mohammad M. A, Alhalaweh A, Velaga S. P. Hansen Solubility Parameter as a Tool to Predict Co-crystal Formation. Int. J. Pharm. 2011, 407 (1-2), 63–71.

Mulye S. P, Jamadar S. A, Karekar P. S, Pore Y. V, Dhawale S. C. Improvement in Physicochemical Properties of Ezetimibe Using a Crystal Engineering Technique. Powder Technol. 2012, 222, 131–138.

Newman A. Drug Product Characterization: What Solid Form Is in My Formulation? Pharmaceutical Powder X-Ray Diffraction Symposium. 2010. 222-225.

Nipun T. S, Ashraful Islam, S. M. SEDDS of Gliclazide: Preparation and Characterization by in-Vitro, Ex-Vivo and in-Vivo Techniques. Saudi Pharm. J. 2014, 22 (4), 343–348.

Pawar J. N, Shete R. T, Gangurde A. B, Moravkar K. K, Javeer S. D, Jaiswar D. R, Amin P. D. Development of Amorphous Dispersions of Artemether with Hydrophilic Polymers via Spray Drying: Physicochemical and in Silico Studies. Asian Journal of Pharmaceutical Sciences. 2015, 433-454.

Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical Co-crystals: An Overview. Int. J. Pharm. 2011, 419 (1-2), 1–11.

Rasenack N, Hartenhauer H, Müller B. W. Microcrystals for Dissolution Rate Enhancement of Poorly Water-Soluble Drugs. Int. J. Pharm. 2003, 254 (2), 137–145.

Remenar J. F, Morissette S. L, Peterson M. L, Moulton B, MacPhee J. M, Guzmán H. R., Almarsson Ö Crystal Engineering of Novel Co-crystals of a Triazole Drug with 1,4-Dicarboxylic Acids. J. Am. Chem. Soc. 2003, 125 (28), 8456–8457.

Saikia B, Bora P, Khatioda R, Sarma B. Hydrogen Bond Synthons in the Interplay of Solubility and Membrane Permeability/Diffusion in Variable Stoichiometry Drug Co-crystals. Cryst. Growth Des. 2015, 15 (11), 5593–5603.

Sanphui P, Goud N. R, Khandavilli U. B. R, Nangia A. Fast Dissolving Curcumin Co-crystals. Cryst. Growth Des. 2011, 11 (9), 4135–4145.

Sarkar A, Tiwari A, Bhasin P. S, Mitra M. Pharmacological and Pharmaceutical Profile of Gliclazide: A Review. J. Appl. Pharm. Sci. 2011, 1 (9), 11–19.

Schultheiss N, Newman A. Pharmaceutical Co-crystals and Their Physicochemical Properties. Cryst. Growth Des. 2009, 9 (6), 2950–2967.

Sevukarajan M, Thanuja B, Sodanapalli R, Nair R. Synthesis and Characterization of a Pharmaceutical Co-Crystal : ( Aceclofenac : Nicotinamide ). J.Pharm.Sci Res 2011, 3 (6), 1288–1293.

Shan N, Zaworotko M. J. The Role of Cocrystals in Pharmaceutical Science. Drug Discov. Today 2008, 13 (9-10), 440–446.

Shav G. V, Kumar A. R, Usha Y. N, Armugam K, Ranjan O. P, Ginjupalli K, Pandey S, Udupa N. Enhanced Dissolution and Bioavailability of Gliclazide Using Solid Dispersion Techniques. Int. J. Drug Deliv. 2010, 2 (1), 49–57.

Shiraki K, Takata N, Takano R, Hayashi Y, Terada K. Dissolution Improvement and the Mechanism of the Improvement from Co-crystallization of Poorly Water-Soluble Compounds. Pharm. Res. 2008, 25 (11), 2581–2592.

Singh S, Singh Baghel R, Yadav L. A Review on Solid Dispersion. Int. J. Pharm. Life Sci. 2011, 2 (9), 1078–1095.

Smith A. J, Kavuru P, Wojtas L, Zaworotko M. J, Shytle R. D. Co-crystals of Quercetin with Improved Solubility and Oral Bioavailability. Mol. Pharm. 2011, 8 (5), 1867–1876.

Taylor M. J, Tanna S, Sahota T. In Vivo Study of a Polymeric Glucose- Sensitive Insulin Delivery System Using a Rat Model. J. Pharm. Sci. 2010, 99 (10), 4215–4227.

Thakuria R, Delori A, Jones W, Lipert M. P, Roy L, Rodríguez-Hornedo N. Pharmaceutical Co-crystals and Poorly Soluble Drugs. Int. J. Pharm. 2013, 453 (1), 101–125.

Torchilin V. P. Micellar Nanocarriers: Pharmaceutical Perspectives. Pharm. Res. 2007, 24 (1), 1–16.

Trask A. V, Samuel Motherwell W. D, Jones W. Pharmaceutical Co-crystallization: Engineering a Remedy for Caffeine Hydration. Cryst. Growth Des. 2005, 5 (3), 1013–1021.

Trask A. V, Motherwell W. D, Jones, W. Physical Stability Enhancement of Theophylline via Co-crystallization. Int. J. Pharm. 2006, 320 (1-2), 114–123.

Umeda Y, Fukami T, Furuishi T, Suzuki T, Tanjoh K, Tomono K. Characterization of Multicomponent Crystal Formed between Indomethacin and Lidocaine. Drug Dev. Ind. Pharm. 2009, 35 (7), 843–851.

Vishweshwar P, Mcmahon J, Zaworotko M. J. Crystal Engineering of Pharmaceutical Co-Crystals. Front. Cryst. Eng. 2005, No. July 2004, 25–49.

Yue X, Qiao Y, Qiao N, Guo S, Xing J, Deng L, Xu J, Dong A. Amphiphilic Methoxy Poly(ethyleneGlycol)-B-Poly(Caprolactone)-B-poly(2-DimethylaminoethylMethacrylate) Cationic Copolymer Nanoparticles as a Vector for Gene and Drug Delivery. Biomacromolecules 2010, 11 (9), 2306–2312.