Potential Distribution of two sympatric pheasant species in Sikkim Himalayas

Authors

  • Atharva Singh
  • Rakesh Kumar
  • Girish Jathar

DOI:

https://doi.org/10.53555/jaz.v43i1.5286

Keywords:

Sympatric Pheasants, eastern Himalayas, Conservation, Machine LearningGIS

Abstract

The Kalij Pheasant Lophura leucomelanos and Satyr Tragopan Tragopan satyra are sympatric pheasant species distributed across the high-altitude forests of the Himalayas, sharing overlapping ecological niches in the region. These species face several conservation challenges like deforestation, habitat fragmentation, and urbanization throughout their range. Although both the species are protected under Wildlife Protection Act of India, their spatial occurrence patterns and habitat requirements remain poorly documented in the eastern Himalayan region. The study presents potential distribution for both the species in the Sikkim Himalayas through Maximum Entropy modeling (MaxEnt) approach. Training datasets comprised 67 occurrence records for Kalij Pheasant and 143 records for Satyr Tragopan. Model outputs demonstrated robust predictive accuracy (Kalij Pheasant: AUC = 0.95; Satyr Tragopan: AUC = 0.94), delineating 1241.80 sq. km (17.5%) and 280.29 sq. km (3.95%) as very highly suitable habitats for Kalij Pheasant and Satyr Tragopan, respectively. This is the first baseline distribution study of both sympatric pheasant species in Sikkim Himalayas.

Downloads

Download data is not yet available.

Author Biographies

Atharva Singh

CSIR - National Environmental Engineering Research Institute (NEERI), Mumbai Maharashtra, India

Rakesh Kumar

CSIR - National Environmental Engineering Research Institute (NEERI), Mumbai Maharashtra, India

Girish Jathar

Bombay Natural History Society, Mumbai, Maharashtra, India

References

1. Ali, S., & Ripley, S. D. (1987). Compact Handbook of the Birds of India and Pakistan together with those of Bangladesh, Nepal, Bhutan and Sri Lanka (2nd ed.). Oxford University Press, New Delhi.

2. Anderson, R. P., & Gonzalez, I. (2011). Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecological Modelling, 222(15), 2796–2811. https://doi.org/10.1016/j.ecolmodel.2011.04.011

3. Araújo, M. B. & A. T. Peterson (2012). Uses and misuses of bioclimatic envelope modeling. Ecology 93(7): 1527–1539. https://doi.org/10.1890/11-1930.1

4. AzharJameel, M., Nadeem, M. S., Kabir, M., Mahmood, T., Akrim, F., Khan, M. A., Awan, M. N., Khan, M. F., Anjum, M. Z., & Aslam, S. (2022b). Habitat suitability modeling of Himalayan Monal and Koklass Pheasant in Western Himalayas and Hindukush, Pakistan. bioRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2022.08.17.504340

5. Chhetri, B., Badola, H. K., & Barat, S. (2018). Predicting climate-driven habitat shifting of the near threatened Satyr Tragopan (Tragopan satyra; Galliformes) in the Himalayas. Avian Biology Research, 11(4), 221–230. https://doi.org/10.3184/175815618x15316676114070

6. Chhetri, B., Badola, H. K., & Barat, S. (2021). How people perceive resilience of Himalayan pheasants (Phasianidae) in relation to climate warming in Eastern Himalaya. Nature Conservation Research, 6(3). https://doi.org/10.24189/ncr.2021.040

7. Clements, C. F., & Ozgul, A. (2018). Indicators of transitions in biological systems. Ecology Letters, 21(6), 905–919. https://doi.org/10.1111/ele.12948

8. Duan, R., Kong, X., Huang, M., Fan, W., & Wang, Z. (2014). The predictive performance and stability of six species distribution models. PLoS ONE, 9(11), e112764. https://doi.org/10.1371/journal.pone.0112764

9. Elith, J. (2000). Quantitative Methods for Modeling Species Habitat: Comparative Performance and an Application to Australian Plants. In: Quantitative Methods for Conservation Biology. Springer, New York, NY. https://doi.org/10.1007/0-387-22648-6_4

10. Elith, J., & Franklin, J. (2016). Species Distribution Modeling. In Elsevier eBooks. https://doi.org/10.1016/b978-0-12-809633-8.02390-6

11. Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution, 1(4), 330–342. https://doi.org/10.1111/j.2041-210x.2010.00036.x

12. Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34(1), 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419

13. Fuller, R. A., & Garson, P. J. (Eds.). (2000). Pheasants: Status Survey and Conservation Action Plan 2000–2004. WPA/BirdLife/SSC Pheasant Specialist Group. IUCN and World Pheasant Association.

14. Furqan, M., Ali, Z., Shahzad, M. M., Ahmad, R., Akrim, F., & Zangi, I. (2022). Habitat suitability modelling of Kalij Pheasant (Lophura leucomelanos) in Mirpur Division, Azad Jammu and Kashmir, Pakistan. Pakistan Journal of Zoology, 56(1). https://doi.org/10.17582/journal.pjz/20210818060855

15. Grimmett, R., Inskipp, C., & Inskipp, T. (1998). Birds of the Indian Subcontinent. Oxford University Press.

16. Jarnevich, C. S. & N. Young (2015). Using the MaxEnt program for species distribution model-ling to assess invasion risk. In: CABI eBooks (pp. 65–81). https://doi.org/10.1079/9781780643946.0065

17. Jolli, V., & Pandit, M. K. (2011). Monitoring pheasants (Phasianidae) in the Western Himalayas to measure the impact of hydro-electric projects. Ring, 33(1–2), 37–46. https://doi.org/10.2478/v10050-011-0003-7

18. Kafash, A., Ashrafi, S., & Yousefi, M. (2021). Modeling habitat suitability of bats to identify high priority areas for field monitoring and conservation. Environmental Science and Pollution Research, 29(17), 25881–25891. https://doi.org/10.1007/s11356-021-17412-7

19. Karp, M. A., Cimino, M., Craig, J. K., Crear, D. P., Haak, C., Hazen, E. L., Kaplan, I., Kobayashi, D. R., Moustahfid, H., Muhling, B., Pinsky, M. L., Smith, L. A., Thorson, J. T., & Woodworth-Jefcoats, P. A. (2025). Applications of species distribution modeling and future needs to support marine resource management. ICES Journal of Marine Science, 82(3). https://doi.org/10.1093/icesjms/fsaf024

20. Khaling, S., Kaul, R., & Saha, G. K. (1998). Surveys of the Satyr Tragopan (Tragopan satyra) in the Singhalila National Park, Darjeeling, India using spring call counts. Bird Conservation International, 8(4), 361–371. https://doi.org/10.1017/s0959270900002124

21. Lissovsky, A. A. & S.V. Dudov (2021). Species-Distribution Modeling: Advantages and Limitations of its application. 2. MaxEnt. Biology Bulletin Reviews 11(3): 265–275.

https://doi.org/10.1134/s2079086421030087

22. Lone, N. A. N., Bhat, B. A., & Ahmad, K. (2024). Population status and habitat use of White-crested Kalij Pheasant (Lophura leucomelanos hamiltoni) in the Limber Wildlife Sanctuary, Jammu & Kashmir, India. Journal of Threatened Taxa, 16(1), 24550–24556. https://doi.org/10.11609/jott.8602.16.1.24550-24556

23. Mehmud, S., N. Kalita, H. Roy & D. Sahariah (2021). Species distribution modelling of Calamus floribundus Griff. (Arecaceae) using Maxent in Assam. Acta Ecologica Sinica 42(2): 115–121. https://doi.org/10.1016/j.chnaes.2021.10.005

24. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. https://doi.org/10.1038/35002501

25. Norbu, N., Wikelski, M. C., Wilcove, D. S., Partecke, J., Ugyen, N., Tenzin, U., Sherub, N., & Tempa, T. (2013). Partial altitudinal migration of a Himalayan forest pheasant. PLoS ONE, 8(4), e60979. https://doi.org/10.1371/journal.pone.0060979

26. Peterson, A. T., J. Soberón, R.G. Pearson, R.P. Anderson, E. Martínez-Meyer, M. Nakamura & M.B. Araújo (2011). Ecological Niches and Geographic Distributions. Princeton University Press.

27. Rahmani, A. R., Islam, M. U., & Kasambe, R. M. (2016). Important bird and biodiversity areas in India: Priority sites for conservation (Rev. & updated ed.). Bombay Natural History Society, Indian Bird Conservation Network, Royal Society for the Protection of Birds, & BirdLife International.

28. Ramesh, K., Sathyakumar, S., & Rawat, G. S. (1999). Ecology and conservation status of pheasants of the Greater Himalayan National Park, Western Himalaya. Report submitted to Wildlife Institute of India, Dehradun.

29. Renner, I. W., & Warton, D. I. (2013). Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics, 69(1), 274–281. https://doi.org/10.1111/j.1541-0420.2012.01824.x

30. Saba, M., Khalil, S., Hussain, M., Khanam, S., Akhter, A., Khatoon, R., Khan, M. A., Khan, K. A., Gul, Z., & Habiba, U. (2024). Spatiotemporal variation in population size and relative abundance of Kalij Pheasant (Lophura leucomelanos) in scrub forest. PLoS ONE, 19(12), e0312809.

https://doi.org/10.1371/journal.pone.0312809

31. Sathyakumar, S., Poudyal, K., Bhattacharya, T., & Bashir, T. (2010). Galliformes of Khangchendzonga Biosphere Reserve, Sikkim, India. In Biodiversity of Sikkim—Exploring and Conserving a Global Hotspot (pp. 301–315).

32. Songer, M., M. Delion, A. Biggs & Q. Huang (2012). Modeling impacts of climate change on gi-ant panda habitat. International Journal of Ecology 2012: 1–12. https://doi.org/10.1155/2012/108752

33. Tambe, S., Arrawatia, M. L., & Sharma, N. (2011). Assessing the priorities for sustainable forest management in the Sikkim Himalaya, India: A remote sensing-based approach. Journal of the Indian Society of Remote Sensing, 39(4), 555–564. https://doi.org/10.1007/s12524-011-0110-6

34. Warren, D. L., & Seifert, S. N. (2010). Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecological Applications, 21(2), 335–342. https://doi.org/10.1890/10-1171.1

Downloads

Published

2022-11-19

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.