Diversity And Abundance of Flower Visiting Insects on Some Garden Plants in Taldharia, West Bengal, India
DOI:
https://doi.org/10.53555/jaz.v43i1.5129Abstract
Flower-visiting insects are remarkable organisms that play an essential role in the life cycle of flowering plants. These insects, also known as pollinators, engage in complex behaviour with flowers as they seek out nectar or pollen. They travel from one flower to another and indirectly transfer pollen from the anthers to the stigma, allowing fertilisation to occur. In light of this, our study aims to develop a comprehensive dataset regarding the diversity of common flower-visiting insects on selected garden plants in the Taldharia region, West Bengal, India. We selected specific garden plants for this study to observe pollinator insects. A total of sixteen species of insects were observed. To collect insects at random locations within the study sites, both sweep net and hand-picking methods were utilised. The insects found belong to the orders Diptera, Hymenoptera, Lepidoptera, and Coleoptera. Among them, Lasius niger was the most abundant, while Papilio polytes was found to be the least abundant. Identification was done with the help of literature, books, and museum specimens. This data will be a valuable resource for future studies and will aid in the preservation of the local flora and fauna.
Downloads
References
1. Kearns, C. A., Inouye, D. W., & Waser, N. M. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. Annual review of ecology and systematics, 29(1):83-112.
2. Matteson, K. C., Grace, J. B., & Minor, E. S. 2013. Direct and indirect effects of land use on floral resources and flower‐visiting insects across an urban landscape. Oikos, 122(5):682-694.
3. Suhandono, S., Sopandi, W., & Yulianda, D. 2020. Diversity of flower-visiting insects in urban and rural areas: A case study from Indonesia. Biodiversitas, 21(4): 1609-1616.
4. Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the royal society B: biological sciences, 274(1608):303-313.
5. Kearns, C. A., Inouye, D. W., & Waser, N. M. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. Annual review of ecology and systematics, 29(1):83-112.
6. Aizen, M. A., Garibaldi, L. A., Cunningham, S. A., & Klein, A. M. 2008. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Current biology, 18(20):1572-1575.
7. Aizen, M. A., & Harder, L. D. 2009. The global stock of domesticated honey bees is growing, but wild pollinators are in decline. Trends in Ecology & Evolution, 24(12):689-694.
8. Losey, J. E., & Vaughan, M. 2006. The economic value of ecological services provided by insects. Bioscience, 56(4):311-323.
9. Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. 2010. Global pollinator declines: trends, impacts and drivers. Trends in ecology & evolution, 25(6):345-353.
10. Mustajärvi, K., Siikamäki, P., Rytkönen, S., & Lammi, A. 2001. Consequences of plant population size and density for plant-pollinator interactions and plant performance. Journal of Ecology, 80-87.
11. Aguilar, R., Ashworth, L., Galetto, L., & Aizen, M. A. 2006. Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta‐analysis. Ecology letters, 9(8):968-980.
12. Kremen, C., Williams, N. M., & Thorp, R. W. 2002. Crop pollination from native bees at risk from agricultural intensification. Proceedings of the National Academy of Sciences, 99(26):16812-16816.
13. Memmott, J., Craze, P. G., Waser, N. M., & Price, M. V. 2007. Global warming and the disruption of plant–pollinator interactions. Ecology letters, 10(8),:710-717.
14. Schweiger, Oliver, Jacobus C. Biesmeijer, Riccardo Bommarco, Thomas Hickler, Philip E. Hulme, Stefan Klotz, Ingolf Kühn.2010. Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biological Reviews 85, no. 4 (2010): 777-795.
15. Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L., & Totland. 2009. How does climate warming affect plant‐pollinator interactions?. Ecology letters, 12(2):184-195.
16. Getis, A., & Franklin, J. 1987. The use of transects in ecological research. Ecological Applications, 6(4):103-116.
17. Larsen, T. B. 2005. Butterflies of West Africa: plate volume, pp 270.
18. Matsumoto, Y. 1998. Sexual dimorphism and mimicry in the Common Jezebel. Journal of Natural History, 32(3).
19. Koh, L. P. 1994. Hybridization and sexual dimorphism in two sympatric swallowtail butterflies. Biological Journal of the Linnean Society, 53(3).
20. Ghosh, S., & K. H. S. Rahul. 2010. The ecological significance of Papilio polytes in the ecosystem. Journal of Lepidoptera Research, 35(1).
21. Raju, R., & M. A. Ganesh. 2014. Pollination ecosystem services by Apis cerana indica. Biodiversity and Conservation, 23(7).
22. Chaudhary, R. 2016. Foraging behaviour of Apis cerana indica in agricultural landscapes. Environmental Entomology, 45(5).
23. Buchmann, S. L., & Nabhan, G. P. 1996. The pollination crisis. The Sciences, 36(4):22-27.
24. van Rijn, P. C., Kooijman, J., & Wäckers, F. L. (2013). The contribution of floral resources and honeydew to the performance of predatory hoverflies (Diptera: Syrphidae). Biological Control, 67(1), 32-38.
25. Dixon, A. F. G. 2000. Insect Predators of Aphids: Biology and Management. Agricultural and Forest Entomology, 2(2):141-150.
26. Jones, T., & Smith, H. 2019. Feeding behaviour of Leptinotarsa decemlineata larvae on various solanaceous crops. Crop Protection, 110:20-28.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Tirthankar Dalui, Ankita Mondal, Saheli Kushari, Soumik Chowdhury

This work is licensed under a Creative Commons Attribution 4.0 International License.