Virulence Mechanisms And Vaccine Development Strategies Against Leishmaniasis: An Evolving Battle
DOI:
https://doi.org/10.53555/jaz.v43i1.5005Keywords:
Leishmaniasis, PKDL, Virulence factor, gp63, Vaccine, Leishmanial antigensAbstract
Leishmaniasis, a neglected tropical disease, is caused by more than 20 species of Leishmania and transmitted primarily by sand flies. It manifests in various forms, including cutaneous, mucocutaneous, visceral, and post kala-azar dermal leishmaniasis (PKDL). Visceral leishmaniasis (VL) is the most severe, affecting organs like the liver and spleen, while cutaneous and mucocutaneous forms cause skin ulcers and mucosal lesions, respectively. Leishmania parasites have evolved sophisticated virulence factors, such as lipophosphoglycan (LPG), GP63 protease, and elongation factor 1α (EF1α), to evade the host immune system and survive within macrophages. These virulence factors are critical targets for vaccine development. Second-generation vaccines have focused on recombinant antigens like gp63 and KMP-11, while third-generation vaccines explore DNA-based strategies targeting key Leishmania antigens. Despite promising results in preclinical studies, challenges such as immune evasion, genetic diversity, and variable host responses hinder universal vaccine efficacy. Continued research into virulence mechanisms and innovative vaccine approaches is essential to developing effective, safe, and widely applicable vaccines against leishmaniasis.
Downloads
References
1. Sasidharan, S.; Saudagar, P. Leishmaniasis: Where Are We and Where Are We Heading? Parasitology Research. 2021. https://doi.org/10.1007/s00436-021-07139-2.
2. Beasley, E. A.; Mahachi, K. G.; Petersen, C. A. Possibility of Leishmania Transmission via Lutzomyia Spp. Sand Flies Within the USA and Implications for Human and Canine Autochthonous Infection. Current Tropical Medicine Reports. 2022. https://doi.org/10.1007/s40475-022-00267-4.
3. Singh, O. P.; Tiwary, P.; Kushwaha, A. K.; Singh, S. K.; Singh, D. K.; Lawyer, P.; Rowton, E.; Chaubey, R.; Singh, A. K.; Rai, T. K.; Fay, M. P.; Chakravarty, J.; Sacks, D.; Sundar, S. Xenodiagnosis to Evaluate the Infectiousness of Humans to Sandflies in an Area Endemic for Visceral Leishmaniasis in Bihar, India: A Transmission-Dynamics Study. Lancet Microbe 2021, 2 (1). https://doi.org/10.1016/S2666-5247(20)30166-X.
4. Gupta, A. K.; Das, S.; Kamran, M.; Ejazi, S. A.; Ali, N. The Pathogenicity and Virulence of Leishmania - Interplay of Virulence Factors with Host Defenses. Virulence. 2022. https://doi.org/10.1080/21505594.2022.2074130.
5. Esch, K. J.; Petersen, C. A. Transmission and Epidemiology of Zoonotic Protozoal Diseases of Companion Animals. Clin Microbiol Rev 2013, 26 (1). https://doi.org/10.1128/CMR.00067-12.
6. Gedda, M. R.; Singh, B.; Kumar, D.; Singh, A. K.; Madhukar, P.; Upadhyay, S.; Singh,
O. P.; Sundar, S. Post Kala-Azar Dermal Leishmaniasis: A Threat to Elimination Program. PLoS Neglected Tropical Diseases. 2020. https://doi.org/10.1371/journal.pntd.0008221.
7. Kumar, A.; Singh, V. K.; Tiwari, R.; Madhukar, P.; Rajneesh; Kumar, S.; Gautam, V.; Engwerda, C.; Sundar, S.; Kumar, R. Post Kala-Azar Dermal Leishmaniasis in the Indian Sub-Continent: Challenges and Strategies for Elimination. Frontiers in Immunology. 2023. https://doi.org/10.3389/fimmu.2023.1236952.
8. Singh, K.; Garg, G.; Ali, V. Current Therapeutics, Their Problems and Thiol Metabolism as Potential Drug Targets in Leishmaniasis. Curr Drug Metab 2016, 17 (9). https://doi.org/10.2174/1389200217666160819161444.
9. Ready, P. D. Epidemiology of Visceral Leishmaniasis. Clinical Epidemiology. 2014. https://doi.org/10.2147/CLEP.S44267.
10. Kumari, D.; Mahajan, S.; Kour, P.; Singh, K. Virulence Factors of Leishmania Parasite: Their Paramount Importance in Unraveling Novel Vaccine Candidates and Therapeutic Targets. Life Sci 2022, 306, 120829. https://doi.org/10.1016/J.LFS.2022.120829.
11. Descoteaux, A.; Avila, H. A.; Zhang, K.; Turco, S. J.; Beverley, S. M. Leishmania LPG3 Encodes a GRP94 Homolog Required for Phosphoglycan Synthesis Implicated in Parasite Virulence but Not Viability. EMBO Journal 2002, 21 (17). https://doi.org/10.1093/emboj/cdf447.
12. Boitz, J. M.; Gilroy, C. A.; Olenyik, T. D.; Paradis, D.; Perdeh, J.; Dearman, K.; Davis,
M. J.; Yates, P. A.; Li, Y.; Riscoe, M. K.; Ullman, B.; Roberts, S. C. Arginase Is Essential for Survival of Leishmania Donovani Promastigotes but Not Intracellular Amastigotes. Infect Immun 2017, 85 (1). https://doi.org/10.1128/IAI.00554-16.
13. Chen, D. Q.; Kolli, B. K.; Yadava, N.; Lu, H. G.; Gilman-Sachs, A.; Peterson, D. A.; Chang, K. P. Episomal Expression of Specific Sense and Antisense MRNAs in Leishmania Amazonensis: Modulation of Gp63 Level in Promastigotes and Their Infection of Macrophages in Vitro. Infect Immun 2000, 68 (1). https://doi.org/10.1128/IAI.68.1.80-86.2000.
14. Sunter, J.; Gull, K. Shape, Form, Function and Leishmania Pathogenicity: From Textbook Descriptions to Biological Understanding. Open Biology. 2017. https://doi.org/10.1098/rsob.170165.
15. Joshi, P. B.; Kelly, B. L.; Kamhawi, S.; Sacks, D. L.; McMaster, W. R. Targeted Gene Deletion in Leishmania Major Identifies Leishmanolysin (GP63) as a Virulence Factor. Mol Biochem Parasitol 2002, 120 (1). https://doi.org/10.1016/S0166-6851(01)00432- 7.
16. Chan, A.; Ayala, J. M.; Alvarez, F.; Piccirillo, C.; Dong, G.; Langlais, D.; Olivier, M. The Role of Leishmania GP63 in the Modulation of Innate Inflammatory Response to Leishmania Major Infection. PLoS One 2021, 16 (12 December). https://doi.org/10.1371/journal.pone.0262158.
17. Isnard, A.; Shio, M. T.; Olivier, M. Impact of Leishmania Metalloprotease GP63 on Macrophage Signaling. Frontiers in cellular and infection microbiology. 2012. https://doi.org/10.3389/fcimb.2012.00072.
18. Rawat, A.; Roy, M.; Jyoti, A.; Kaushik, S.; Verma, K.; Srivastava, V. K. Cysteine Proteases: Battling Pathogenic Parasitic Protozoans with Omnipresent Enzymes. Microbiological Research. 2021. https://doi.org/10.1016/j.micres.2021.126784.
19. Elmahallawy, E. K.; Alkhaldi, A. A. M. Insights into Leishmania Molecules and Their Potential Contribution to the Virulence of the Parasite. Vet Sci 2021, 8 (2). https://doi.org/10.3390/vetsci8020033.
20. Olivier, M.; Atayde, V. D.; Isnard, A.; Hassani, K.; Shio, M. T. Leishmania Virulence Factors: Focus on the Metalloprotease GP63. Microbes Infect 2012, 14 (15). https://doi.org/10.1016/j.micinf.2012.05.014.
21. Doroud, D.; Zahedifard, F.; Vatanara, A.; Taslimi, Y.; Vahabpour, R.; Torkashvand, F.; Vaziri, B.; Najafabadi, A.; Rafati, S. C-Terminal Domain Deletion Enhances the Protective Activity of Cpa/Cpb Loaded Solid Lipid Nanoparticles against Leishmania Major in Balb/c Mice. PLoS Negl Trop Dis 2011, 5 (7). https://doi.org/10.1371/journal.pntd.0001236.
22. Saljoughian, N.; Taheri, T.; Zahedifard, F.; Taslimi, Y.; Doustdari, F.; Bolhassani, A.; Doroud, D.; Azizi, H.; Heidari, K.; Vasei, M.; Namvar Asl, N.; Papadopoulou, B.; Rafati, S. Development of Novel Prime-Boost Strategies Based on a Tri-Gene Fusion Recombinant L. Tarentolae Vaccine against Experimental Murine Visceral Leishmaniasis. PLoS Negl Trop Dis 2013, 7 (4). https://doi.org/10.1371/journal.pntd.0002174.
23. Swenerton, R. K.; Zhang, S.; Sajid, M.; Medzihradszky, K. F.; Craik, C. S.; Kelly, B. L.; McKerrow, J. H. The Oligopeptidase B of Leishmania Regulates Parasite Enolase and Immune Evasion. Journal of Biological Chemistry 2011, 286 (1). https://doi.org/10.1074/jbc.M110.138313.
24. Gomes, P. S.; Carneiro, M. P. D.; Machado, P. de A.; de Andrade-Neto, V. V.; da Fonseca-Martins, A. M.; Goundry, A.; da Silva, J. V. M. P.; Gomes, D. C. O.; Lima, A.
P. C. de A.; Ennes-Vidal, V.; Sodero, A. C. R.; De-Simone, S. G.; Guedes, H. L. de M. Subtilisin of Leishmania Amazonensis as Potential Druggable Target: Subcellular Localization, In Vitro Leishmanicidal Activity and Molecular Docking of PF-429242, a Subtilisin Inhibitor. Curr Issues Mol Biol 2022, 44 (5). https://doi.org/10.3390/cimb44050141.
25. Damianou, A.; Burge, R. J.; Catta-Preta, C. M. C.; Geoghegan, V.; Romina Nievas, Y.; Newling, K.; Brown, E.; Burchmore, R.; Rodenko, B.; Mottram, J. C. Essential Roles for Deubiquitination in Leishmania Life Cycle Progression. PLoS Pathog 2020, 16 (6). https://doi.org/10.1371/journal.ppat.1008455.
26. Kumar, P.; Kumar, P.; Mandal, D.; Velayutham, R. The Emerging Role of Deubiquitinases (DUBs) in Parasites: A Foresight Review. Frontiers in Cellular and Infection Microbiology. 2022. https://doi.org/10.3389/fcimb.2022.985178.
27. Prasanna, P.; Upadhyay, A. Heat Shock Proteins as the Druggable Targets in Leishmaniasis: Promises and Perils. Infect Immun 2021, 89 (2). https://doi.org/10.1128/IAI.00559-20.
28. Clos, J.; Grünebast, J.; Holm, M. Promastigote-to-Amastigote Conversion in Leishmania Spp.—A Molecular View. Pathogens. 2022. https://doi.org/10.3390/pathogens11091052.
29. Efstathiou, A.; Smirlis, D. Leishmania Protein Kinases: Important Regulators of the Parasite Life Cycle and Molecular Targets for Treating Leishmaniasis. Microorganisms 2021, 9 (4). https://doi.org/10.3390/microorganisms9040691.
30. Freitas-Mesquita, A. L.; Dos-Santos, A. L. A.; Meyer-Fernandes, J. R. Involvement of Leishmania Phosphatases in Parasite Biology and Pathogeny. Frontiers in Cellular and Infection Microbiology. 2021. https://doi.org/10.3389/fcimb.2021.633146.
31. Elmahallawy, E. K.; Alkhaldi, A. A. M.; Saleh, A. A. Host Immune Response against Leishmaniasis and Parasite Persistence Strategies: A Review and Assessment of Recent Research. Biomedicine and Pharmacotherapy. 2021. https://doi.org/10.1016/j.biopha.2021.111671.
32. Volpedo, G.; Bhattacharya, P.; Gannavaram, S.; Pacheco-Fernandez, T.; Oljuskin, T.; Dey, R.; Satoskar, A. R.; Nakhasi, H. L. The History of Live Attenuated Centrin Gene- Deleted Leishmania Vaccine Candidates. Pathogens. 2022. https://doi.org/10.3390/pathogens11040431.
33. Dinc, R. Leishmania Vaccines: The Current Situation with Its Promising Aspect for the Future. Korean Journal of Parasitology. 2022. https://doi.org/10.3347/kjp.2022.60.6.379.
34. Yasmin, H.; Adhikary, A.; Al-Ahdal, M. N.; Roy, S.; Kishore, U. Host–Pathogen Interaction in Leishmaniasis: Immune Response and Vaccination Strategies. Immuno. 2022. https://doi.org/10.3390/immuno2010015.
35. Abdellahi, L.; Iraji, F.; Mahmoudabadi, A.; Hejazi, S. H. Vaccination in Leishmaniasis: A Review Article. Iranian Biomedical Journal. 2022. https://doi.org/10.52547/ibj.26.1.35.
36. Fernández, L.; Carrillo, E.; Sánchez-Sampedro, L.; Sánchez, C.; Ibarra-Meneses, A. V.; Jimenez, M. A.; Almeida, V. dos A.; Esteban, M.; Moreno, J. Antigenicity of Leishmania-Activated C-Kinase Antigen (LACK) in Human Peripheral Blood Mononuclear Cells, and Protective Effect of Prime-Boost Vaccination with PCI-Neo- LACK plus Attenuated LACK-Expressing Vaccinia Viruses in Hamsters. Front Immunol 2018, 9 (APR). https://doi.org/10.3389/fimmu.2018.00843.
37. Petitdidier, E.; Pagniez, J.; Pissarra, J.; Holzmuller, P.; Papierok, G.; Vincendeau, P.; Lemesre, J. L.; Bras-Gonçalves, R. Peptide-Based Vaccine Successfully Induces Protective Immunity against Canine Visceral Leishmaniasis. NPJ Vaccines 2019, 4 (1). https://doi.org/10.1038/s41541-019-0144-.
38. de Mendonça, S. C. F.; Cysne-Finkelstein, L.; Matos, D. C. de S. Kinetoplastid Membrane Protein-11 as a Vaccine Candidate and a Virulence Factor in Leishmania. Frontiers in Immunology. 2015. https://doi.org/10.3389/fimmu.2015.00524.
39. De Brito, R. C. F.; Cardoso, J. M. de O.; Reis, L. E. S.; Vieira, J. F.; Mathias, F. A. S.; Roatt, B. M.; Aguiar-Soares, R. D. D. O.; Ruiz, J. C.; Resende, D. de M.; Reis, A. B. Peptide Vaccines for Leishmaniasis. Frontiers in Immunology. 2018. https://doi.org/10.3389/fimmu.2018.01043.
40. Valério-Bolas, A.; Meunier, M.; Palma-Marques, J.; Rodrigues, A.; Santos, A. M.; Nunes, T.; Ferreira, R.; Armada, A.; Alves, J. C.; Antunes, W.; Cardoso, I.; Mesquita- Gabriel, S.; Lobo, L.; Alexandre-Pires, G.; Marques, L.; Pereira da Fonseca, I.; Santos- Gomes, G. Exploiting Leishmania—Primed Dendritic Cells as Potential Immunomodulators of Canine Immune Response. Cells 2024, 13 (5). https://doi.org/10.3390/cells13050445.
41. Palatnik-de-Sousa, C. B.; Barbosa, A. D. F.; Oliveira, S. M.; Nico, D.; Bernardo, R. R.; Santos, W. R.; Rodrigues, M. M.; Soares, I.; Borja-Cabrera, G. P. FML Vaccine against Canine Visceral Leishmaniasis: From Second-Generation to Synthetic Vaccine. Expert Review of Vaccines. 2008. https://doi.org/10.1586/14760584.7.6.833.
42. Bhattacharjee, M.; Banerjee, M.; Mukherjee, A. In Silico Designing of a Novel Polyvalent Multi-Subunit Peptide Vaccine Leveraging Cross-Immunity against Human Visceral and Cutaneous Leishmaniasis: An Immunoinformatics-Based Approach. J Mol Model 2023, 29 (4). https://doi.org/10.1007/s00894-023-05503-w.
43. Leite, J. C.; Gonçalves, A. A. M.; de Oliveira, D. S.; Resende, L. A.; Boas, D. F. V.; Ribeiro, H. S.; Pereira, D. F. S.; da Silva, A. V.; Mariano, R. M. da S.; Reis, P. C. C.; Nakasone, E. N.; França-Silva, J. C.; Galdino, A. S.; Paes, P. R. de O.; Melo, M. M.; Dias, E. S.; Chávez-Fumagalli, M. A.; da Silveira-Lemos, D.; Dutra, W. O.; Giunchetti,
R. C. Transmission-Blocking Vaccines for Canine Visceral Leishmaniasis: New Progress and Yet New Challenges. Vaccines. 2023. https://doi.org/10.3390/vaccines11101565.
44. Kaye, P. M.; Matlashewski, G.; Mohan, S.; Le Rutte, E.; Mondal, D.; Khamesipour, A.; Malvolti, S. Vaccine Value Profile for Leishmaniasis. Vaccine 2023, 41. https://doi.org/10.1016/j.vaccine.2023.01.057.
45. Velez, R.; Gállego, M. Commercially Approved Vaccines for Canine Leishmaniosis: A Review of Available Data on Their Safety and Efficacy. Tropical Medicine and International Health. 2020. https://doi.org/10.1111/tmi.13382.
46. Oliveira, D. S. de; Zaldívar, M. F.; Gonçalves, A. A. M.; Resende, L. A.; Mariano, R.
M. da S.; Pereira, D. F. S.; Conrado, I. dos S. S.; Costa, M. A. F.; Lair, D. F.; Vilas- Boas, D. F.; Nakasone, E. N.; Ameno, I. de S.; Goes, W. M.; Silveira-Lemos, D.; Galdino, A. S.; Nagem, R. A. P.; Dutra, W. O.; Giunchetti, R. C. New Approaches to the Prevention of Visceral Leishmaniasis: A Review of Recent Patents of Potential Candidates for a Chimeric Protein Vaccine. Vaccines. 2024. https://doi.org/10.3390/vaccines12030271.
47. Fattahi Bafghi, A.; Rezaee, E.; Ahmadi, S.; Gholamrezaei, M.; Firouzeh, N. Review of Molecular Approaches in Leishmaniasis Vaccines: Implications and Restrictions. International Journal of Infection 2022, 9 (2). https://doi.org/10.5812/iji-121894.
48. Volpedo, G.; Huston, R. H.; Holcomb, E. A.; Pacheco-Fernandez, T.; Gannavaram, S.; Bhattacharya, P.; Nakhasi, H. L.; Satoskar, A. R. From Infection to Vaccination:
Reviewing the Global Burden, History of Vaccine Development, and Recurring Challenges in Global Leishmaniasis Protection. Expert Review of Vaccines. 2021. https://doi.org/10.1080/14760584.2021.1969231.
49. Saha, S.; Vashishtha, S.; Kundu, B.; Ghosh, M. In-Silico Design of an Immunoinformatics Based Multi-Epitope Vaccine against Leishmania Donovani. BMC Bioinformatics 2022, 23 (1). https://doi.org/10.1186/s12859-022-04816-6.
50. Coutinho De Oliveira, B.; Duthie, M. S.; Alves Pereira, V. R. Vaccines for Leishmaniasis and the Implications of Their Development for American Tegumentary Leishmaniasis. Human Vaccines and Immunotherapeutics. 2020. https://doi.org/10.1080/21645515.2019.1678998.
51. Mortazavidehkordi, N.; Fallah, A.; Abdollahi, A.; Kia, V.; Khanahmad, H.; Najafabadi,
Z. G.; Hashemi, N.; Estiri, B.; Roudbari, Z.; Najafi, A.; Farjadfar, A.; Hejazi, S. H. A Lentiviral Vaccine Expressing KMP11-HASPB Fusion Protein Increases Immune Response to Leishmania Major in BALB/C. Parasitol Res 2018, 117 (7). https://doi.org/10.1007/s00436-018-5915-6.
52. Ansari, I.; Basak, R.; Mukhopadhyay, A. Hemoglobin Endocytosis and Intracellular Trafficking: A Novel Way of Heme Acquisition by Leishmania. Pathogens. 2022. https://doi.org/10.3390/pathogens11050585.
53. Vuitika, L.; Prates-Syed, W. A.; Silva, J. D. Q.; Crema, K. P.; Côrtes, N.; Lira, A.; Lima, J. B. M.; Camara, N. O. S.; Schimke, L. F.; Cabral-Marques, O.; Sadraeian, M.; Chaves, L. C. S.; Cabral-Miranda, G. Vaccines against Emerging and Neglected Infectious Diseases: An Overview. Vaccines. 2022. https://doi.org/10.3390/vaccines10091385.
54. De Albuquerque Luna, E. J.; De Souza Leão Da Costa Campos, S. R. Vaccine Development against Neglected Tropical Diseases. Cadernos de Saude Publica. 2020. https://doi.org/10.1590/0102-311X00215720.
55. Duthie, M. S.; Van Hoeven, N.; MacMillen, Z.; Picone, A.; Mohamath, R.; Erasmus, J.; Hsu, F. C.; Stinchcomb, D. T.; Reed, S. G. Heterologous Immunization with Defined RNA and Subunit Vaccines Enhances T Cell Responses That Protect against Leishmania Donovani. Front Immunol 2018, 9 (OCT). https://doi.org/10.3389/fimmu.2018.02420.
56. Masoudzadeh, N.; Mizbani, A.; Rafati, S. Transcriptomic Profiling in Cutaneous Leishmaniasis Patients. Expert Review of Proteomics. 2020. https://doi.org/10.1080/14789450.2020.1812390.
57. Duthie, M. S.; Machado, B. A. S.; Badaró, R.; Kaye, P. M.; Reed, S. G. Leishmaniasis Vaccines: Applications of RNA Technology and Targeted Clinical Trial Designs. Pathogens. 2022. https://doi.org/10.3390/pathogens11111259.
58. Burgos-Reyes, M. A.; Baylón-Pacheco, L.; Espíritu-Gordillo, P.; Galindo-Gómez, S.; Tsutsumi, V.; Rosales-Encina, J. L. Effect of Prophylactic Vaccination with the Membrane-Bound Acid Phosphatase Gene of Leishmania Mexicana in the Murine Model of Localized Cutaneous Leishmaniasis. J Immunol Res 2021, 2021. https://doi.org/10.1155/2021/6624246.
59. Osman, M.; Mistry, A.; Keding, A.; Gabe, R.; Cook, E.; Forrester, S.; Wiggins, R.; Di Marco, S.; Colloca, S.; Siani, L.; Smith, D. F.; Aebischer, T.; Kaye, P. M.; Lacey, C. J. A Third Generation Vaccine for Human Visceral Leishmaniasis and Post Kala Azar
Dermal Leishmaniasis: First-in-Human Trial of ChAd63-KH. PLoS Negl Trop Dis
2017, 11 (5). https://doi.org/10.1371/journal.pntd.0005527.
60. Folegatti, P. M.; Jenkin, D.; Morris, S.; Gilbert, S.; Kim, D.; Robertson, J. S.; Smith, E. R.; Martin, E.; Gurwith, M.; Chen, R. T. Vaccines Based on the Replication-Deficient Simian Adenoviral Vector ChAdOx1: Standardized Template with Key Considerations for a Risk/Benefit Assessment. Vaccine 2022, 40 (35). https://doi.org/10.1016/j.vaccine.2022.06.008.
61. Ribeiro, P. A. F.; Dias, D. S.; Lage, D. P.; Martins, V. T.; Costa, L. E.; Santos, T. T. O.; Ramos, F. F.; Tavares, G. S. V.; Mendonça, D. V. C.; Ludolf, F.; Gomes, D. A.; Rodrigues, M. A.; Chávez-Fumagalli, M. A.; Silva, E. S.; Galdino, A. S.; Duarte, M. C.; Roatt, B. M.; Menezes-Souza, D.; Teixeira, A. L.; Coelho, E. A. F. Immunogenicity and Protective Efficacy of a New Leishmania Hypothetical Protein Applied as a DNA Vaccine or in a Recombinant Form against Leishmania Infantum Infection. Mol Immunol 2019, 106. https://doi.org/10.1016/j.molimm.2018.12.025.
62. Martínez-Flórez, A.; Martori, C.; Monteagudo, P. L.; Rodriguez, F.; Alberola, J.; Rodríguez-Cortés, A. Sirolimus Enhances the Protection Achieved by a DNA Vaccine against Leishmania Infantum. Parasit Vectors 2020, 13 (1). https://doi.org/10.1186/s13071-020-04165-4.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Dr. Mithun Maji
This work is licensed under a Creative Commons Attribution 4.0 International License.