Anti-Cancer Efficacy of Niosomal Encapsulated Withania somnifera on Breast Cancer Cells: An in Vitro Study
DOI:
https://doi.org/10.53555/jaz.v45i6.4924Keywords:
Niosomes, Withania somnifera, Breast cancer, Molecular analysis, Anti-cancer efficacyAbstract
Molecular analysis of breast cancer cells by niosomal encapsulated Withania somnifera (WS) extract is the focus of this investigation. Characterization of ASH-loaded niosomes produced by a thin film technique showed that they have an appropriate zeta potential, small particle size, and low polydispersity index. The concentration-dependent suppression of cell proliferation was seen in MCF-7 breast cancer cells treated with ASH-NIO, with an IC50 of 24.13 μM, and olaparib at values of 10.45 μM. Molecular investigation showed that ASH-NIO treated cells had lower levels of B-cell lymphoma 2 (Bcl2) mRNA expression compared to untreated cells, and upregulated levels of Tumor protein 53 (P53), Bcl-2-associated X protein (Bax), caspase-9, and caspase-3. These results provide more evidence that ASH-NIO has potential anti-cancer effects and may be useful as an adjunctive treatment for breast cancer.
Downloads
References
Taha, Z., & Eltom, S. E. (2018). The role of diet and lifestyle in women with breast cancer: an update review of related research in the Middle East. BioResearch open access, 7(1), 73-80.
Liu, Y. Q., Wang, X. L., He, D. H., & Cheng, Y. X. (2021). Protection against chemotherapy-and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. Phytomedicine, 80, 153402.
Sawant, R., Baghkar, A., Jagtap, S., Harad, L., Chavan, A., Khan, N. A., & Kale, M. K. (2018). A review on-Herbs in anticancer. Asian Journal of Research in Pharmaceutical Science, 8(4), 179-184.
Liu, Z. B., Zhang, T., Ye, X., Liu, Z. Q., Sun, X., Zhang, L. L., & Wu, C. J. (2022). Natural substances derived from herbs or plants are promising sources of anticancer agents against colorectal cancer via triggering apoptosis. Journal of Pharmacy and Pharmacology, 74(2), 162-178.
Oyenihi, O. R., Oyenihi, A. B., Erhabor, J. O., Matsabisa, M. G., & Oguntibeju, O. O. (2021). Unravelling the anticancer mechanisms of traditional herbal medicines with metabolomics. Molecules, 26(21), 6541.
Liaudanskas, M., Žvikas, V., & Petrikaitė, V. (2021). The Potential of Dietary Antioxidants from a Series of Plant Extracts as Anticancer Agents against Melanoma, Glioblastoma, and Breast Cancer. Antioxidants, 10(7), 1115.
Mazurkiewicz, A., Mądry, W., Kołodziej, M., Męczyńska, J., Saiuk, N., Kozicz, M. A., & Salasa, W. (2024). Ashwagandha (Withania somnifera)-Its Antibacterial and Anticancer Activity. Journal of Education, Health and Sport, 66, 50081-50081.
Kim, K., & Khang, D. (2020). Past, present, and future of anticancer nanomedicine. International Journal of Nanomedicine, 5719-5743.
Barani, M., Hajinezhad, M. R., Sargazi, S., Rahdar, A., Shahraki, S., Lohrasbi-Nejad, A., & Baino, F. (2021). In vitro and in vivo anticancer effect of pH-responsive paclitaxel-loaded niosomes. Journal of Materials Science: Materials in Medicine, 32, 1-13.
El-Far, S. W., Abo El-Enin, H. A., Abdou, E. M., Nafea, O. E., & Abdelmonem, R. (2022). Targeting colorectal cancer cells with niosomes systems loaded with two anticancer drugs models; comparative in vitro and anticancer studies. Pharmaceuticals, 15(7), 816.
Mirzaei-Parsa, M. J., Najafabadi, M. R. H., Haeri, A., Zahmatkeshan, M., Ebrahimi, S. A., Pazoki-Toroudi, H., & Adel, M. (2020). Preparation, characterization, and evaluation of the anticancer activity of artemether-loaded nano-niosomes against breast cancer. Breast Cancer, 27, 243-251.
Dabbagh Moghaddam, F., Akbarzadeh, I., Marzbankia, E., Farid, M., Khaledi, L., Reihani, A. H., & Mortazavi, P. (2021). Delivery of melittin-loaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect. Cancer Nanotechnology, 12(1), 14.
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature protocols, 3(6), 1101-1108.
Mehta, V., Chander, H., & Munshi, A. (2021). Mechanisms of anti-tumor activity of Withania somnifera (Ashwagandha). Nutrition and Cancer, 73(6), 914-926.
Kashyap, V. K., Dhasmana, A., Yallapu, M. M., Chauhan, S. C., & Jaggi, M. (2020). Withania somnifera as a potential future drug molecule for COVID-19. Future drug discovery, 2(4), FDD50.
Siddiqui, M. A., Farshori, N. N., Al-Oqail, M. M., Pant, A. B., & Al-Khedhairy, A. A. (2021). Neuroprotective Effects of Withania somnifera on 4-Hydroxynonenal Induced Cell Death in Human Neuroblastoma SH-SY5Y Cells Through ROS Inhibition and Apoptotic Mitochondrial Pathway. Neurochemical Research, 46, 171-182.
Peng, S. Y., Wang, Y. Y., Lan, T. H., Lin, L. C., Yuan, S. S. F., Tang, J. Y., & Chang, H. W. (2020). Low dose combined treatment with ultraviolet-C and withaferin a enhances selective killing of oral cancer cells. Antioxidants, 9(11), 1120.
Tewari, D., Chander, V., Dhyani, A., Sahu, S., Gupta, P., Patni, P., & Bishayee, A. (2022). Withania somnifera (L.) Dunal: Phytochemistry, structure-activity relationship, and anticancer potential. Phytomedicine, 98, 153949.
Salve, J., Pate, S., Debnath, K., & Langade, D. (2019). Adaptogenic and anxiolytic effects of ashwagandha root extract in healthy adults: a double-blind, randomized, placebo-controlled clinical study. Cureus, 11(12).
Sadeghian, M., Rahmani, S., Khalesi, S., & Hejazi, E. (2021). A review of fasting effects on the response of cancer to chemotherapy. Clinical nutrition, 40(4), 1669-1681.
Prasad, K. S., Prasad, S. K., Veerapur, R., Lamraoui, G., Prasad, A., Prasad, M. N., & Shivamallu, C. (2021). Antitumor potential of green synthesized ZnONPs using root extract of Withania somnifera against human breast cancer cell line. Separations, 8(1), 8.
Ertugrul, B., Iplik, E. S., & Cakmakoglu, B. (2021). In vitro inhibitory effect of succinic acid on T-cell acute lymphoblastic leukemia cell lines. Archives of Medical Research, 52(3), 270-276.
Niu, C., Zong, Z., Zhang, X., Wu, R., Li, N., Wang, H., & Fan, Y. (2019). Synthesis, structures and biological activity of novel complexes with trifluorinated anthranilic acid derivatives. Journal of Molecular Structure, 1194, 42-47.
Varela-Rodríguez, L., Sánchez-Ramírez, B., Hernández-Ramírez, V. I., Varela-Rodríguez, H., Castellanos-Mijangos, R. D., González-Horta, C., & Talamás-Rohana, P. (2020). Effect of Gallic acid and Myricetin on ovarian cancer models: a possible alternative antitumoral treatment. BMC complementary medicine and therapies, 20(1), 110.
Dar, P. A., Mir, S. A., Bhat, J. A., Hamid, A., Singh, L. R., Malik, F., & Dar, T. A. (2019). An anti-cancerous protein fraction from Withania somnifera induces ROS-dependent mitochondria-mediated apoptosis in human MDA-MB-231 breast cancer cells. International journal of biological macromolecules, 135, 77-87.
Jawarneh, S., & Talib, W. H. (2022). Combination of ashwagandha water extract and intermittent fasting as a therapy to overcome cisplatin resistance in breast cancer: an in vitro and in vivo study. Frontiers in Nutrition, 9, 863619.
Yu, Y., Wang, J., Kaul, S. C., Wadhwa, R., & Miyako, E. (2019). Folic acid receptor-mediated targeting enhances the cytotoxicity, efficacy, and selectivity of withania somnifera leaf extract: In vitro and in vivo evidence. Frontiers in Oncology, 9, 602.
Sun, C. Y., Zhu, Y., Li, X. F., Wang, X. Q., Tang, L. P., Su, Z. Q., & Feng, B. (2018). Scutellarin increases cisplatin-induced apoptosis and autophagy to overcome cisplatin resistance in non-small cell lung cancer via ERK/p53 and c-met/AKT signaling pathways. Frontiers in pharmacology, 9, 92.
Muniraj, N., Siddharth, S., Nagalingam, A., Walker, A., Woo, J., Győrffy, B., & Sharma, D. (2019). Withaferin A inhibits lysosomal activity to block autophagic flux and induces apoptosis via energetic impairment in breast cancer cells. Carcinogenesis, 40(9), 1110-1120.
Jiang, Y., Martin, J., Alkadhimi, M., Shigemori, K., Kinchesh, P., Gilchrist, S., et al. (2021). Olaparib increases the therapeutic index of hemithoracic irradiation compared with hemithoracic irradiation alone in a mouse lung cancer model. British Journal of Cancer, 124(11), 1809-1819.
Zhao, H., Yang, Q., Hu, Y., & Zhang, J. (2018). Antitumor effects and mechanisms of olaparib in combination with carboplatin and BKM120 on human triple‑negative breast cancer cells. Oncology Reports, 40(6), 3223-3234.
Vysyaraju, N. R., Paul, M., Ch, S., Ghosh, B., & Biswas, S. (2022). Olaparib@ human serum albumin nanoparticles as sustained drug-releasing tumour-targeting nanomedicine to inhibit growth and metastasis in the mouse model of triple-negative breast cancer. Journal of Drug Targeting, 30(10), 1088-1105.
Heisey, D. A., Lochmann, T. L., Floros, K. V., Coon, C. M., Powell, K. M., Jacob, S., et al. (2019). The ewing family of tumors relies on BCL-2 and BCL-XL to escape PARP inhibitor toxicitynavitoclax sensitizes ewing sarcoma to olaparib. Clinical Cancer Research, 25(5), 1664-1675.
Paraghamian, S. E., Hawkins, G. M., Sun, W., Fan, Y., Zhang, X., Suo, H., et al. (2021). Abstract PO044: A novel dopamine receptor D2 antagonist (ONC206) potentiates the effects of olaparib in endometrial cancer. Clinical Cancer Research, 27(3), PO044-PO044.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Areej Dawoud, Baraah Suleiman Abidallah Aljaafreh, Abubaker Elrotob, Salah Ali Alawadhi, Ehab y Ibrahim Alorafi
This work is licensed under a Creative Commons Attribution 4.0 International License.