Anti-Cancer Efficacy of Niosomal Encapsulated Withania somnifera on Breast Cancer Cells: An in Vitro Study

Authors

  • Areej Dawoud
  • Baraah Suleiman Abidallah Aljaafreh
  • Abubaker Elrotob
  • Salah Ali Alawadhi
  • Ehab y Ibrahim Alorafi

DOI:

https://doi.org/10.53555/jaz.v45i6.4924

Keywords:

Niosomes, Withania somnifera, Breast cancer, Molecular analysis, Anti-cancer efficacy

Abstract

Molecular analysis of breast cancer cells by niosomal encapsulated Withania somnifera (WS) extract is the focus of this investigation. Characterization of ASH-loaded niosomes produced by a thin film technique showed that they have an appropriate zeta potential, small particle size, and low polydispersity index. The concentration-dependent suppression of cell proliferation was seen in MCF-7 breast cancer cells treated with ASH-NIO, with an IC50 of 24.13 μM, and olaparib at values of 10.45 μM. Molecular investigation showed that ASH-NIO treated cells had lower levels of B-cell lymphoma 2 (Bcl2) mRNA expression compared to untreated cells, and upregulated levels of Tumor protein 53 (P53), Bcl-2-associated X protein (Bax), caspase-9, and caspase-3. These results provide more evidence that ASH-NIO has potential anti-cancer effects and may be useful as an adjunctive treatment for breast cancer.

Downloads

Download data is not yet available.

Author Biographies

Areej Dawoud

Ibn Sina National College for Medical Studies

Baraah Suleiman Abidallah Aljaafreh

Medical laboratory science, Mutah University

Abubaker Elrotob

Department of Epidemiology, Health Science Faculty, Misurata University, Libya

Salah Ali Alawadhi

Doctor

Ehab y Ibrahim Alorafi

Master's degree in Biology

References

Taha, Z., & Eltom, S. E. (2018). The role of diet and lifestyle in women with breast cancer: an update review of related research in the Middle East. BioResearch open access, 7(1), 73-80.‏

Liu, Y. Q., Wang, X. L., He, D. H., & Cheng, Y. X. (2021). Protection against chemotherapy-and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. Phytomedicine, 80, 153402.‏

Sawant, R., Baghkar, A., Jagtap, S., Harad, L., Chavan, A., Khan, N. A., & Kale, M. K. (2018). A review on-Herbs in anticancer. Asian Journal of Research in Pharmaceutical Science, 8(4), 179-184.‏

Liu, Z. B., Zhang, T., Ye, X., Liu, Z. Q., Sun, X., Zhang, L. L., & Wu, C. J. (2022). Natural substances derived from herbs or plants are promising sources of anticancer agents against colorectal cancer via triggering apoptosis. Journal of Pharmacy and Pharmacology, 74(2), 162-178.‏

Oyenihi, O. R., Oyenihi, A. B., Erhabor, J. O., Matsabisa, M. G., & Oguntibeju, O. O. (2021). Unravelling the anticancer mechanisms of traditional herbal medicines with metabolomics. Molecules, 26(21), 6541.‏

Liaudanskas, M., Žvikas, V., & Petrikaitė, V. (2021). The Potential of Dietary Antioxidants from a Series of Plant Extracts as Anticancer Agents against Melanoma, Glioblastoma, and Breast Cancer. Antioxidants, 10(7), 1115.‏

Mazurkiewicz, A., Mądry, W., Kołodziej, M., Męczyńska, J., Saiuk, N., Kozicz, M. A., & Salasa, W. (2024). Ashwagandha (Withania somnifera)-Its Antibacterial and Anticancer Activity. Journal of Education, Health and Sport, 66, 50081-50081.‏

Kim, K., & Khang, D. (2020). Past, present, and future of anticancer nanomedicine. International Journal of Nanomedicine, 5719-5743.‏

Barani, M., Hajinezhad, M. R., Sargazi, S., Rahdar, A., Shahraki, S., Lohrasbi-Nejad, A., & Baino, F. (2021). In vitro and in vivo anticancer effect of pH-responsive paclitaxel-loaded niosomes. Journal of Materials Science: Materials in Medicine, 32, 1-13.‏

El-Far, S. W., Abo El-Enin, H. A., Abdou, E. M., Nafea, O. E., & Abdelmonem, R. (2022). Targeting colorectal cancer cells with niosomes systems loaded with two anticancer drugs models; comparative in vitro and anticancer studies. Pharmaceuticals, 15(7), 816.‏

Mirzaei-Parsa, M. J., Najafabadi, M. R. H., Haeri, A., Zahmatkeshan, M., Ebrahimi, S. A., Pazoki-Toroudi, H., & Adel, M. (2020). Preparation, characterization, and evaluation of the anticancer activity of artemether-loaded nano-niosomes against breast cancer. Breast Cancer, 27, 243-251.‏

Dabbagh Moghaddam, F., Akbarzadeh, I., Marzbankia, E., Farid, M., Khaledi, L., Reihani, A. H., & Mortazavi, P. (2021). Delivery of melittin-loaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect. Cancer Nanotechnology, 12(1), 14.‏

Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature protocols, 3(6), 1101-1108.‏

Mehta, V., Chander, H., & Munshi, A. (2021). Mechanisms of anti-tumor activity of Withania somnifera (Ashwagandha). Nutrition and Cancer, 73(6), 914-926.‏

Kashyap, V. K., Dhasmana, A., Yallapu, M. M., Chauhan, S. C., & Jaggi, M. (2020). Withania somnifera as a potential future drug molecule for COVID-19. Future drug discovery, 2(4), FDD50.‏

Siddiqui, M. A., Farshori, N. N., Al-Oqail, M. M., Pant, A. B., & Al-Khedhairy, A. A. (2021). Neuroprotective Effects of Withania somnifera on 4-Hydroxynonenal Induced Cell Death in Human Neuroblastoma SH-SY5Y Cells Through ROS Inhibition and Apoptotic Mitochondrial Pathway. Neurochemical Research, 46, 171-182.‏

Peng, S. Y., Wang, Y. Y., Lan, T. H., Lin, L. C., Yuan, S. S. F., Tang, J. Y., & Chang, H. W. (2020). Low dose combined treatment with ultraviolet-C and withaferin a enhances selective killing of oral cancer cells. Antioxidants, 9(11), 1120.‏

Tewari, D., Chander, V., Dhyani, A., Sahu, S., Gupta, P., Patni, P., & Bishayee, A. (2022). Withania somnifera (L.) Dunal: Phytochemistry, structure-activity relationship, and anticancer potential. Phytomedicine, 98, 153949.‏

Salve, J., Pate, S., Debnath, K., & Langade, D. (2019). Adaptogenic and anxiolytic effects of ashwagandha root extract in healthy adults: a double-blind, randomized, placebo-controlled clinical study. Cureus, 11(12).‏

Sadeghian, M., Rahmani, S., Khalesi, S., & Hejazi, E. (2021). A review of fasting effects on the response of cancer to chemotherapy. Clinical nutrition, 40(4), 1669-1681.‏

Prasad, K. S., Prasad, S. K., Veerapur, R., Lamraoui, G., Prasad, A., Prasad, M. N., & Shivamallu, C. (2021). Antitumor potential of green synthesized ZnONPs using root extract of Withania somnifera against human breast cancer cell line. Separations, 8(1), 8.‏

Ertugrul, B., Iplik, E. S., & Cakmakoglu, B. (2021). In vitro inhibitory effect of succinic acid on T-cell acute lymphoblastic leukemia cell lines. Archives of Medical Research, 52(3), 270-276.‏

Niu, C., Zong, Z., Zhang, X., Wu, R., Li, N., Wang, H., & Fan, Y. (2019). Synthesis, structures and biological activity of novel complexes with trifluorinated anthranilic acid derivatives. Journal of Molecular Structure, 1194, 42-47.‏

Varela-Rodríguez, L., Sánchez-Ramírez, B., Hernández-Ramírez, V. I., Varela-Rodríguez, H., Castellanos-Mijangos, R. D., González-Horta, C., & Talamás-Rohana, P. (2020). Effect of Gallic acid and Myricetin on ovarian cancer models: a possible alternative antitumoral treatment. BMC complementary medicine and therapies, 20(1), 110.‏

Dar, P. A., Mir, S. A., Bhat, J. A., Hamid, A., Singh, L. R., Malik, F., & Dar, T. A. (2019). An anti-cancerous protein fraction from Withania somnifera induces ROS-dependent mitochondria-mediated apoptosis in human MDA-MB-231 breast cancer cells. International journal of biological macromolecules, 135, 77-87.‏

Jawarneh, S., & Talib, W. H. (2022). Combination of ashwagandha water extract and intermittent fasting as a therapy to overcome cisplatin resistance in breast cancer: an in vitro and in vivo study. Frontiers in Nutrition, 9, 863619.‏

Yu, Y., Wang, J., Kaul, S. C., Wadhwa, R., & Miyako, E. (2019). Folic acid receptor-mediated targeting enhances the cytotoxicity, efficacy, and selectivity of withania somnifera leaf extract: In vitro and in vivo evidence. Frontiers in Oncology, 9, 602.‏

Sun, C. Y., Zhu, Y., Li, X. F., Wang, X. Q., Tang, L. P., Su, Z. Q., & Feng, B. (2018). Scutellarin increases cisplatin-induced apoptosis and autophagy to overcome cisplatin resistance in non-small cell lung cancer via ERK/p53 and c-met/AKT signaling pathways. Frontiers in pharmacology, 9, 92.‏

Muniraj, N., Siddharth, S., Nagalingam, A., Walker, A., Woo, J., Győrffy, B., & Sharma, D. (2019). Withaferin A inhibits lysosomal activity to block autophagic flux and induces apoptosis via energetic impairment in breast cancer cells. Carcinogenesis, 40(9), 1110-1120.‏

Jiang, Y., Martin, J., Alkadhimi, M., Shigemori, K., Kinchesh, P., Gilchrist, S., et al. (2021). Olaparib increases the therapeutic index of hemithoracic irradiation compared with hemithoracic irradiation alone in a mouse lung cancer model. British Journal of Cancer, 124(11), 1809-1819.

Zhao, H., Yang, Q., Hu, Y., & Zhang, J. (2018). Antitumor effects and mechanisms of olaparib in combination with carboplatin and BKM120 on human triple‑negative breast cancer cells. Oncology Reports, 40(6), 3223-3234.

Vysyaraju, N. R., Paul, M., Ch, S., Ghosh, B., & Biswas, S. (2022). Olaparib@ human serum albumin nanoparticles as sustained drug-releasing tumour-targeting nanomedicine to inhibit growth and metastasis in the mouse model of triple-negative breast cancer. Journal of Drug Targeting, 30(10), 1088-1105.‏

Heisey, D. A., Lochmann, T. L., Floros, K. V., Coon, C. M., Powell, K. M., Jacob, S., et al. (2019). The ewing family of tumors relies on BCL-2 and BCL-XL to escape PARP inhibitor toxicitynavitoclax sensitizes ewing sarcoma to olaparib. Clinical Cancer Research, 25(5), 1664-1675.

Paraghamian, S. E., Hawkins, G. M., Sun, W., Fan, Y., Zhang, X., Suo, H., et al. (2021). Abstract PO044: A novel dopamine receptor D2 antagonist (ONC206) potentiates the effects of olaparib in endometrial cancer. Clinical Cancer Research, 27(3), PO044-PO044.

Downloads

Published

2024-07-24

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.