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Abstract   

   

Streptococcus, a genus of Gram-positive bacteria, encompasses many 

species with diverse ecological roles, from commensals in the human 

microbiota to pathogens causing a spectrum of infections. Understanding 

the biology and evolution of Streptococcus is crucial for unraveling its 

significance in health and disease. In this paper, I shall study the trait 

evolution of 4 genomic features - Genome size, Genomic GC content, 

Genomic repeat fraction, and Number of coding genes in the 

Streptococcus genus. Using phylogenetic generalized least squares, I find 

a strong positive correlation between genome size and the number of 

coding genes, while other features are unrelated. 
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Introduction 
 

The Streptococcus genus is a prominent and diverse group of bacteria characterized by their spherical or cocci-

shaped cells (B.Spellberg., 2015)1. These Gram-positive bacteria are widely distributed across various 

environments, including soil, water, and the human body. One of their distinctive features is their tendency to 

form chains or pairs during cell division, which can be observed under a microscope (B. Lara et al., 2005)2. 

The genus encompasses various species, each with unique characteristics and adaptations. 

 

Streptococci exhibit significant variability in terms of their ecological roles and interactions (JO Mundt, 1982)3. 

While some species are commensals (Kreth et al., 2017 4; Salvadori et al., 20195), coexisting harmlessly with 

their host organisms, others can be opportunistic pathogens, causing various infections in humans and other 

animals (Cunningham, 2000)6. The adaptability and versatility of Streptococcus make it an intriguing subject 

of study in microbiology as researchers explore the factors determining whether these bacteria become 

beneficial residents or disease-causing agents within a host. 

 

Moreover, the Streptococcus genus has practical importance in various industries and fields. Some species are 

involved in cheese and yogurt fermentation processes, contributing to their flavor and texture. Additionally, 

they have been studied extensively for their genetics and physiology, offering insights into fundamental 
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biological processes. Understanding the diverse roles and behaviors of Streptococcus bacteria contributes to 

our knowledge of microbiology, evolutionary biology, and the complex relationships between microorganisms 

and their hosts. 

 

An organism's genome provides a detailed record of its evolutionary history and can give insights into its 

phenotype, metabolomics, and proteome (Ellegren , 2014)7. There are many genomic features that are studied 

in global level genome size, genomic GC, number of genes, non-coding regions, 3D genome organization, and 

local genomic contexts like - local mechanical and shape properties. I restrict myself to the study of whole 

genomic features in streptococcus genera. To study these features between closely spaced species, we need to 

account for the phylogenetic non-independency of data points. I shall use trait evolution models and 

phylogenetically corrected regressions to understand the pattern of genomic features in Streptococci. 

 

Trait evolution models are essential tools in evolutionary biology and provide a framework for understanding 

how traits change over time in populations and species (Munkemuller et al., 2012)8.  These models correct for 

phylogeny similarity of the species, which may play a role in trait similarity, and then explore questions related 

to adaptation and diversification of life forms. There are several trait evolution models in the literature; some 

of the popular ones are - Brownian motion (Felsenstein , 1985)9, OU model (Butler and King, 2005)10, EB 

model (Clavel et al., 2019)11, lambda model (Ho et al., 2014)12, and white noise model (Cooper et al., 2010)13. 

Brownian motion model, the most basic model of trait evolution, assumes that trait evolution occurs as a 

random walk, with trait values changing continuously along branches of a phylogenetic tree. Under this model, 

traits evolve without any specific directionality, and the variance of trait change is proportional to the time 

elapsed. Ornstein-Uhlenbeck's (OU) model, which incorporates stabilizing selection, posits that traits are 

subject to a restoring force that pulls them toward an optimal value, providing a mechanism for trait 

convergence. The OU model is especially relevant when examining traits adapted to specific ecological niches. 

The EB (Early Burst) model suggests that during the early stages of a lineage's evolutionary history, a rapid 

burst of diversification leads to the emergence of a wide variety of traits or species. Subsequently, this rate of 

diversification slows down over time. The Lambda model assumes that trait evolution follows a Brownian 

motion process, where trait values change continuously along phylogenetic tree branches. However, it allows 

for the rate of trait change to vary across branches, with λ serving as a scaling factor. A λ value of 1 indicates 

that the trait evolves constantly across the tree, while values greater than 1 suggest accelerated trait evolution 

along some branches, and values less than 1 indicate decelerated evolution. The white model shows how traits 

change over time and across different species. Unlike models that assume specific evolutionary processes like 

Brownian motion or Ornstein-Uhlenbeck, the White Noise Model assumes that trait evolution is entirely 

random, with no correlation between traits of closely related species. 

 

This study investigates the evolution of 4 genomic features in the streptococcus genus - genome size, genomic 

GC, number of coding regions, and genomic repeat fraction. We explore the relationship between them with 

the help of phylogenetic regression, study their trait evolution with the help of the above-mentioned trait 

evolution models, and examine which one is most appropriate for each trait.  

 

2. Methods 
 

2.1 Plotting Phylogenetic tree to visualize the phylogenetic relationships 

 

The genome for 48 Streptococci bacteria was downloaded from the NCBI database (Federhen et al 2012)14, 

and their accessions are given in Table 1. The phylogenetic tree for the streptococcus genera was plotted using 

the TYGS server (Kolthoff et al., 2019)15, and a 16S phylogenetic tree was taken. The phylogenetic tree is 

shown in Figure 1. The phylogenetic tree was also taken as a Newick format for further analysis. 

2.2 Computation of genomic features 

 

The genomic features - genome size, GC, and coding genes were obtained from NCBI sites. The SSR repeats 

in the genome were detected using the repeat finder plugin of Geneios Prime 2023. The repeat finder uses a k-

mer approach to detect repeats and is database-independent, making it suitable for species for which repeat 

databases are unavailable (Benson, 1999)16. The repeat lengths were summated and divided by the total genome 

size to obtain the genomic fraction. The table showing the genomic features for each species is given in Table 

1. 
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2.3 Phylogenetic modeling of trait evolution 

 

For statistical analysis, we used the programming language R v.4.01 (RC Team., 2000)17. We used the Pearson 

correlation test to check for the correlations using the cor.test() function of the base package. The phylogenetic 

least squares regression was performed using ape (Paradis et al., 2019)18 and caper packages (Orme et al., 

2013)19 in R. The phylogenetic comparative modeling was performed using the Geiger package of R and  

Brownian motion, OU model, EB model, lambda model, and white noise model was fitted, and their AICs were 

checked using aic function of the base package. 

 

3. Results 
 

Table 1 shows the species taken for analyses, their NCBI accession numbers, and their genomic features. We 

can see that 95% confidence intervals for genome size are (1.959 - 2.083) MB, for genomic GC (38.636 - 

39.946) %, for coding genes (1831 - 1941), and for genomic repeat fraction (16.053 - 20.933)%.  We can see 

a greater spread in the distribution of the values for genomic repeat fraction than genomic GC, which has a 

narrower range. The Pearson correlation between the genomic features was computed and plotted as a 

correlation heatmap.  

 

Table 1 

Species Accession number Genome size (MB) Genome GC coding genes genomic repeat fraction(%) 

Streptococcus agalactiae NZ_CP012480.1 2.082 35.4 1993 26.171 

Streptococcus anginosus NZ_CP012805.1 1.966 38.8 1846 6.888 

Streptococcus australis NZ_LR134285.1 2.013 42.1 1858 15.188 

Streptococcus caballi GCF_000379985.1 2.122 40.4 2000 10.95 

Streptococcus canis GCF_010993845.2 2.073 39.69 1896 22.607 

Streptococcus castoreus GCF_000425025.1 1.883 37.8 1723 11.751 

Streptococcus constellatus GCF_900459125.1 1.903 38 1782 23.403 

Streptococcus criceti GCF_900459215.1 2.425 42.2 2072 27.342 

Streptococcus cristatus GCF_900475445.1 2.047 42.4 1936 46.558 

Streptococcus didelphis GCF_000380005.1 1.905 36 1344 7.405 

Streptococcus downei 52087_B01 2.235 43.55 1918 33.322 

Streptococcus dysgalactiae NZ_CP066069.1 2.117 39.4 1961 21.645 

Streptococcus equi NZ_CP065054.1 2.141 41.2 1955 22.573 

Streptococcus equinus GCF_900102715.1 1.875 37.3 1773 7.361 

Streptococcus ferus GCF_900475025.1 1.872 42.7 1782 10.999 

Streptococcus gallolyticus NZ_CP054015.1 2.246 37.5 2153 16.28 

Streptococcus henryi GCF_900104235.1 2.425 38.55 2268 13.509 

Streptococcus hyovaginalis GCF_000420785.1 2.019 39.9 1877 8.75 

Streptococcus ictaluri GCF_000188015.2 2.23 38.2 1998 27.763 

Streptococcus infantis ASM18746v1 1.792 39.5 1729 11.818 

Streptococcus iniae ASM30091v1 1.995 36.6 1858 25.726 

Streptococcus intermedius NZ_LS483436.1 1.942 37.6 1807 12.217 

Streptococcus lutetiensis GCF_900475675.1 1.843 37.5 1745 21.512 

Streptococcus macacae GCF_900459485.1 1.923 37.8 1774 17.999 

Streptococcus marimammalium GCF_000380045.1 1.505 33.2 1402 10.95 

Streptococcus massiliensis GCF_900459365.1 1.864 41.6 1843 32.547 

Streptococcus merionis GCF_900187085.1 2.357 41.8 2094 21.701 

Streptococcus minor GCF_000377005.1 1.927 41.1 1885 7.148 

Streptococcus mitis ASM96000v1 1.984 40 1831 16.041 

Streptococcus mutans NZ_CP044221.1 1.984 36.8 1829 16.531 

Streptococcus oralis NZ_LR134336.1 1.973 41.1 1866 32.77 

Streptococcus orisratti GCF_000380105.1 2.097 38.5 2178 17.574 

Streptococcus ovis GCF_000380125.1 2.358 40.1 2291 12.817 
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Streptococcus parauberis ASM290038v1 2.084 35.5 1977 19.433 

Streptococcus pasteurianus GCF_004843545.1 2.14 37.3 2080 15.142 

Streptococcus peroris GCF_000187585.1 1.286 39.4 1586 9.978 

Streptococcus phocae GCF_001302265.1 1.679 39.55 1555 9.16 

Streptococcus plurextorum GCF_000423745.1 2.103 41.1 2022 11.514 

Streptococcus pneumoniae NZ_CP020549.1 2.085 39.6 1954 13.485 

Streptococcus pseudopneumoniae NC_015875.1 2.172 39.8 2019 21.052 

Streptococcus pseudoporcinus 48128_D02 2.124 37.35 1925 19.701 

StreptococcuspyogenesNCTC120

64 NZ_LS483338.1 1.791 38.4 1665 15.548 

Streptococcus ratti :GCF_008803015.1 2.079 40.8 1915 18.366 

Streptococcus salivarius Ssal_L25 2.185 39.5 1920 22.809 

Streptococcus sobrinus NZ_CP029491.1 2.112 43.5 1977 22.871 

Streptococcus suis NC_012926.1 2.106 41.1 1963 26.035 

Streptococcus thermophilus GCF_001657915.1 1.931 39.5 1830 26.288 

 

We see a significant correlation between all the genomic parameters- genome size is positively correlated with 

genomic GC ( R = 0.341, P = 0.009, N= 48), genomic repeat fraction ( R = 0.318, P = 0.029, N = 48), number 

of coding genes (R = 0.865, P = 2.2E-16, N= 48). Genomic GC is positively correlated with genomic repeat 

fraction ( R = 0.317, P = 0.030, N= 48) and number of coding genes ( R = 0.386, P = 0.003, N= 48). Genomic 

repeat fraction is nearly correlated with the number of coding genes ( R = 0.272, P = 0.065, N= 48). Some of 

these correlations can be understood in the context of pre-existing literature, which talks about the trends of 

genomic features. We also know that organismal complexity is correlated with genome size in organisms with 

smaller genomes (Gregory, 2000). Since protein-coding genes can be considered as a proxy of organismal 

complexity, we find them to be positively correlated. These trends are, however not seen in larger multicellular 

organisms, which tend to have much larger genomes and don’t show a similar increase in geomic complexity. 

Since streptococci are prokaryotes, the positive scaling between genomic size and the number of coding genes 

is the expected behavior.  

 

Figure 1 

(a) 

 

(b) 

 

Figure 1 - (a) 16S phylogenetic tree of the streptococcal species considered under this study. (b) The 

correlation plot shows the correlation between the genomic features of the species. 
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We find that nearly all these traits are strongly correlated with each other, but this correlation can be misleading 

since all the members belong to the same genus and are thus closely related.  To correct for phylogenetic 

influence, we applied for phylogenetic least squares (Symonds and Bloomberg, 2014)21. The results of 

phylogenetic least squares are shown in Table 2. Upon correcting for phylogenetic closeness, we see that most 

of these correlations disappear, indicating they are merely scientific artifacts. Only the positive correlation 

between genome size and the number of coding genes remains, indicating that the relationship between genome 

size and genomic complexity is also seen in streptococci, as in other prokaryotic phyla. 

We also see a significant positive correlation between genomic GC and repeat fraction, but after phylogenetic 

correction, it has a low R2, indicating a negligible interaction. 

 

Table 2 

Independent variable Dependent variable R2 P kappa lambda delta 

Genome size Coding 0.7057 9.44E-14 1 1 1 

Genome size GC -0.0002874 0.3258 1 1 1 

Genome size genomic repeat fraction 0.05344 0.0643 1 1 1 

GC Coding 0.01411 0.2044 1 1 1 

GC genomic repeat fraction 0.06761 0.04305 1 1 1 

genomic repeat fraction Coding 0.07757 0.0325 1 1 1 

 

To check for the trait evolution of genome size, genomic GC , genomic repeat fraction and coding genes in 

Streptococcus genus we fit the trait values to Brownian motion, Ornstein -Uhlenbeck model, early burst model, 

lambda model and white noise model. The AIC values of these models are tabulated in Table 3 

. 

Table 3 

AIC Values 

Brownian 

Motion OU model EB model lambda model white noise 

Genome size -7.508 2.561 -5.508 -5.508 -7.508 

Genomic GC 189.385 189.378 185.747 191.385 213.808 

Coding genes 629.081 629.261 631.918 631.117 630.293 

Genomic repeat fraction 337.423 362.793 339.423 338.242 337.423 

 

In the above table we have marked the best performing model for each of the traits in bold. We can see that 

Brownian motion best explains the evolution of genomic size, genomic repeat fraction, and number of coding 

genes. This may indicate that during evolution , the descendant nodes of the common ancestor might have 

undergone genome expansion and contraction, giving rise to a wider range of values. It seems to indicate a lack 

of directionality for genome size evolution and complexity in streptococci. Unlike other traits, genomic GC is 

the only trait for which the best-fit model is not Brownian motion , and fits better to an early burst model. The 

white noise and Brownian motion models perform well for both genome size and repeat fraction. 

 

4. Discussion 
 

Our study of the evolution of 4 genomic features- genome size, genomic GC , genomic repeat fraction, and 

number of coding genes in the streptococcus genus showed that the random walk or Brownian motion model 

was the best performing model for 3 out of 4 features. The white noise model also explains the trait evolution 

well for two of 4 genomic features. Both Brownian motion and white noise models agree on the lack of any 

directional trend in the evolution of the traits concerned. This implies that genome size, complexity, and 

genomic repeat fraction tend to be non-directional in their evolution in streptococci and may even be 

independent of phylogeny. Genomic GC shows some phylogenetic influence in diversification across the 

genus. It shows rapid diversification in the early stages, followed by a slow pace.  

Our results also show that these genomic features are not related to each other if corrected for phylogeny. The 

only exceptions are genome size and number of coding genes, which show a strong correlation post-

phylogenetic correction as well, which was expected in a prokaryotic taxon. Genomic GC and repeat fraction 

are significantly correlated post phylogenetic corrections, though the correlation is weak given its low R2. From 
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our study, we conclude that there is no directional trend for the evolution of the 4 genomic features in 

streptococci, and these 4 features, except for genome size and complexity, are independent of each other. 
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