

Journal of Advanced Zoology

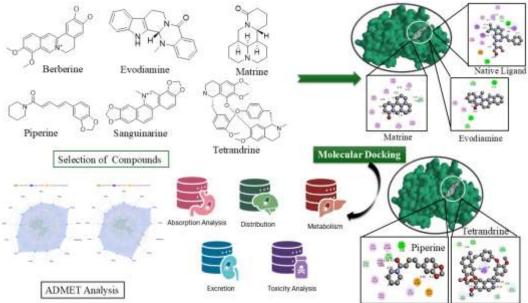
ISSN: 0253-7214 Volume 43 Issue 1 Year 2022 Page 1663-1674

Computational Evaluation of Potent Alkaloids as Promising CDK2 Inhibitors

A.A. Kazi¹*

^{1*}Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, Latur, Maharashtra, India

*Corresponding Author E-mail: kaziaasim@gmail.com


Abstract

Cyclin-dependent kinase 2 (CDK2) plays a crucial regulatory role in cell-cycle progression, making it an attractive target for anticancer drug development. In this study, six bioactive alkaloids—berberine, evodiamine, matrine, piperine, sanguinarine, and tetrandrine—were computationally evaluated to identify potent CDK2 inhibitors. The selected molecules, chosen for their welldocumented anticancer activities, were subjected to a systematic workflow comprising molecular docking, ADMET prediction, drug-likeness assessment, and environmental toxicity analysis. Molecular docking performed using PyRx and AutoDock Vina revealed that several alkaloids exhibit strong binding affinity toward CDK2, with sanguinarine (-10.3 kcal/mol), evodiamine (-9.8 kcal/mol), and berberine (-9.3 kcal/mol) outperforming the native ligand. Their superior interactions were attributed to favorable hydrogen bonding, electrostatic forces, and extensive hydrophobic contacts within the CDK2 active site. ADMET analysis conducted through SwissADME and ADMETlab 3.0 demonstrated that evodiamine, piperine, and matrine possess balanced pharmacokinetic properties, while berberine and sanguinarine showed moderate oral absorption and acceptable safety profiles. Drug-likeness evaluation indicated full compliance with Lipinski's rules for all compounds, with evodiamine and matrine exhibiting the highest QED values. Toxicity modeling highlighted moderate risks for certain molecules; however, the potent compounds remained within manageable safety margins. Environmental toxicity assessment further differentiated the compounds based on bioaccumulation and aquatic toxicity potential. Overall, the integrated computational approach identified sanguinarine, evodiamine, and berberine as the most promising CDK2 inhibitors. Their strong binding affinities, supportive ADMET characteristics, and favorable drug-likeness profiles warrant further experimental validation to advance them as potential anticancer therapeutic candidates.

CC License CC-BY-NC-SA 4.0

Keywords: CDK2 inhibitors, alkaloids, molecular docking, ADMET analysis, drug-likeness, anticancer agents, computational modeling.

Graphical Abstract

Introduction

Cancer remains one of the leading causes of morbidity and mortality worldwide, driven largely by uncontrolled cell proliferation and dysregulation of key molecular pathways that govern the cell cycle. Among the numerous proteins implicated in cell-cycle control, cyclin-dependent kinase 2 (CDK2) has emerged as a central regulatory enzyme responsible for coordinating the G1/S transition and DNA synthesis (1-3). CDK2 forms active complexes with cyclins E and A, enabling the phosphorylation of substrates essential for DNA replication and cell-cycle progression. Aberrant activation or overexpression of CDK2 has been observed in various malignancies, including breast, lung, colon, ovarian, and prostate cancers, where it contributes to unchecked proliferation, genomic instability, and therapeutic resistance. Consequently, CDK2 has gained prominence as an attractive molecular target for anticancer drug development, prompting extensive interest in designing selective inhibitors that can modulate its activity (4,5). Natural products, particularly plant-derived secondary metabolites, continue to play a significant role in modern drug discovery due to their structural diversity, biological relevance, and favorable pharmacological properties (6,7). Among these, alkaloids constitute one of the most widely studied classes of bioactive phytochemicals (8–10). Alkaloids such as berberine, evodiamine, matrine, piperine, sanguinarine, and tetrandrine have been extensively documented for their anticancer potential, exhibiting activities that include apoptosis induction, cell-cycle arrest, inhibition of metastasis, disruption of signaling pathways, and suppression of angiogenesis (11,12). Their multifaceted mechanisms of action and structural adaptability make them compelling candidates for further evaluation as CDK2 inhibitors. Advances in computational chemistry have revolutionized early-stage drug discovery by enabling rapid, costeffective screening of molecular interactions between potential therapeutic candidates and biological targets. Techniques such as molecular docking, pharmacokinetic prediction, and toxicity modeling provide detailed insights into the binding behavior, drug-likeness, and overall suitability of compounds before they progress to experimental validation. Molecular docking, in particular, allows the prediction of ligand-protein interactions by estimating binding conformations and affinity within the active site of the target protein. When combined with in silico ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis, these approaches help identify compounds with optimal pharmacokinetic properties and minimal safety liabilities (13,14). The assessment of drug-likeness further refines the selection process by evaluating physicochemical features aligned with successful oral drugs, such as those defined by Lipinski's rule of five. Additionally, environmental toxicity modeling is increasingly recognized as a crucial component of early drug development, ensuring that the designed molecules do not pose ecological hazards that could limit their therapeutic advancement. Computational strategies therefore provide a comprehensive framework for identifying candidates with both therapeutic potential and acceptable safety profiles. Given the pharmacological significance of alkaloids and the therapeutic relevance of CDK2 inhibition, a systematic computational evaluation of selected natural alkaloids is warranted. Such an approach not only supports the identification of promising lead molecules but also enhances understanding of their molecular interactions, predicted bioavailability, and potential toxicity (15,16). This study aims to explore the inhibitory potential of six bioactive alkaloids against CDK2 using an integrated in silico methodology, providing valuable insights that may guide future experimental and medicinal chemistry efforts toward developing novel anticancer agents.

Method Section

Selection of compound

In this study, six bioactive alkaloids—berberine, evodiamine, matrine, piperine, sanguinarine, and tetrandrine—were selected for computational evaluation as potential CDK2 inhibitors. These compounds were chosen based on extensive literature evidence highlighting their strong anticancer properties, favorable pharmacological profiles, and documented effects on key molecular pathways associated with cell-cycle regulation.

Berberine is widely reported to inhibit tumor proliferation through modulation of MAPK, PI3K/AKT, JAK/STAT, and NF-κB signaling pathways. Evodiamine exhibits potent antiproliferative activity by inducing apoptosis, suppressing metastasis, and inhibiting topoisomerase-related pathways. Matrine has demonstrated anticancer efficacy by promoting apoptosis and regulating Bcl-2 family proteins, along with inducing cell-cycle arrest. Piperine is known to enhance cytotoxicity, inhibit cancer cell migration, and improve the bioavailability of other anticancer agents. Sanguinarine is a strong inducer of ROS-mediated apoptosis, mitochondrial dysfunction, and caspase activation, contributing to pronounced antiproliferative effects. Tetrandrine, a bis-benzylisoquinoline alkaloid, has shown significant inhibitory effects on cancer progression by suppressing calcium-dependent signaling, inducing autophagy, and blocking cell-cycle progression (17). Collectively, these alkaloids represent diverse structural classes with established anticancer potential, making them suitable candidates for computational screening against CDK2 in the present study

Molecular Docking

Molecular docking was conducted to evaluate the binding affinity and interaction profiles of the selected phytoconstituents against the target protein. The chemical structures of all ligands were initially sketched and energy-minimized using ChemDraw, followed by conversion into compatible 3D formats. Canonical SMILES and additional structural attributes (100.864692, 101.746577, and 79.892615) were retrieved from PubChem to ensure structural accuracy and uniformity prior to docking. The optimized ligand structures were imported into PyRx 0.9, where they were subjected to energy minimization using the Universal Force Field (UFF). AutoDock Vina, integrated within PyRx, was employed as the docking engine. The target protein structure was prepared by removing crystallographic water molecules, adding polar hydrogens, and repairing incomplete residues (18–20). Grid box dimensions were defined to fully encompass the active site, ensuring unbiased exploration of all potential binding pockets. Docking simulations were performed with default Vina parameters, and the best poses were selected based on binding affinity scores (kcal/mol). The resulting protein–ligand complexes were further analyzed using Biovia Discovery Studio Visualizer, which enabled detailed visualization of hydrogen bonding, hydrophobic interactions, π – π stacking, and other non-covalent contacts within the binding pocket. This integrative workflow ensured reliable prediction of ligand–receptor interactions and facilitated the identification of compounds with the most promising molecular docking profiles.

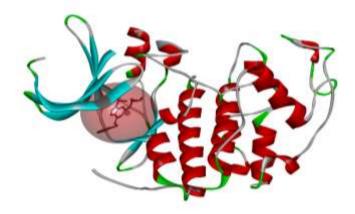


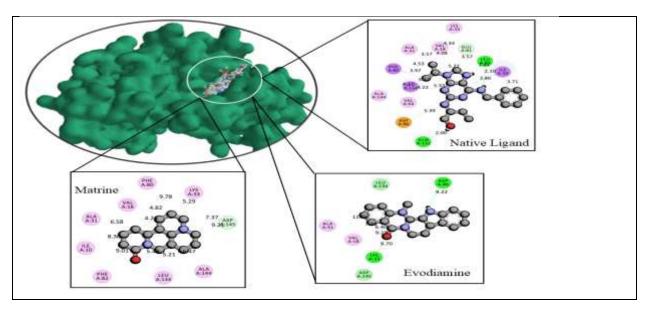
Figure 1. 3D line ribbon representation of cyclin-dependent kinase 2 with Native Ligand

ADMET Analysis

Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) profiling of the selected phytoconstituents was performed using a combination of computational tools to predict drug-likeness and pharmacokinetic suitability. Initially, the two-dimensional structures of all compounds were drawn and energyoptimized using ChemDraw, ensuring accurate stereochemistry and molecular geometry. The canonical SMILES and physicochemical descriptors for each compound were subsequently retrieved from PubChem to standardize molecular input parameters. The obtained molecular structures were screened through SwissADME, which provided detailed predictions of physicochemical properties, lipophilicity (logP), water solubility (logS), gastrointestinal absorption, bioavailability score, and compliance with drug-likeness filters such as Lipinski, Ghose, Veber, Egan, and Muegge criteria. Parameters such as topological polar surface area (TPSA), number of rotatable bonds, hydrogen bond donors, and acceptors were also assessed to estimate membrane permeability and oral absorption potential. Further toxicity and pharmacokinetic evaluation was conducted using ADMETlab 3.0, which generated quantitative predictions for parameters including plasma protein binding, blood-brain barrier penetration, cytochrome P450 interactions, hepatotoxicity, mutagenicity, and acute toxicity indices. Environmental toxicity descriptors, bioaccumulation factors, and in-silico LD50 values were also examined to ensure comprehensive safety assessment (21,22). Together, these computational approaches provided an integrated ADMET profile for each compound, enabling systematic comparison of their drug-likeness, pharmacokinetic behavior, and toxicity risks to support their selection for downstream molecular docking and therapeutic evaluation.

Results and Discussion

Molecular Docking


The molecular docking analysis of selected alkaloids against cyclin-dependent kinase 2 (CDK2) revealed significant variations in binding affinities and interaction profiles, highlighting their potential as CDK2 inhibitors **figure 2**. The native ligand exhibited a docking score of –8.3 kcal/mol, forming key stabilizing interactions with residues such as ASP86, LEU83, GLN131, PHE80, and ILE10, thus serving as a reference for evaluating the inhibitory potential of the tested compounds. Among the alkaloids, sanguinarine demonstrated the highest binding affinity with a docking score of –10.3 kcal/mol, surpassing the native ligand. Its strong interaction pattern included attractive electrostatic interactions with ASP145 and a conventional hydrogen bond with THR14. Hydrophobic (Pi–Sigma) interactions with ILE10 and multiple contacts with LEU134 further stabilized the complex, suggesting a strong propensity to occupy the CDK2 active pocket. Evodiamine also showed excellent affinity (–9.8 kcal/mol), supported by carbon hydrogen bonding with ASP145 and robust hydrophobic interactions involving LEU134, ALA144, and VAL64. The presence of Pi-Sigma and Pi-Alkyl contacts indicates a well-fitted orientation within the hydrophobic region of the active site. Berberine displayed a docking score of –9.3 kcal/mol, forming stabilizing hydrogen bonds with GLY13 and hydrophobic interactions with LEU134, VAL18, and ILE10.

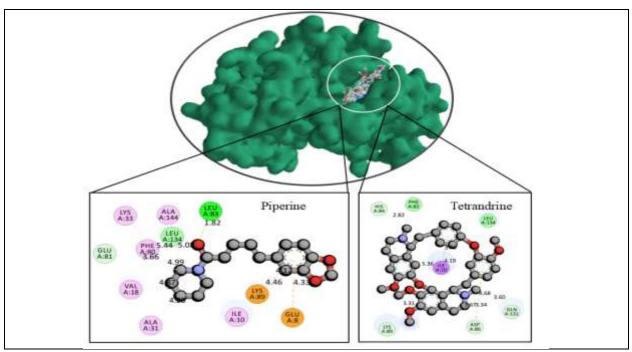

These interactions suggest a stable ligand orientation and favorable binding energy, ranking berberine as another strong CDK2 inhibitor candidate. Matrine and piperine showed moderate but still significant interactions, each with docking scores of –8.6 kcal/mol. Matrine primarily stabilized through alkyl interactions with VAL64, LEU134, ILE10, and VAL18, whereas piperine formed a strong conventional hydrogen bond with LEU83 and notable electrostatic interactions (Pi-cation with LYS89 and Pi-anion with GLU8). These interactions reflect their moderate affinities and possible role as supplementary CDK2 modulators. Among all compounds, tetrandrine showed the weakest binding (–7.5 kcal/mol), despite forming several hydrogen bonds with ASP86, HIS84, GLN131, and LYS89. Hydrophobic interactions with ILE10 and Pi-anion interactions with ASP86 contributed to stability, but the overall affinity remained lower than other alkaloids. Overall, the docking results indicate that sanguinarine, evodiamine, and berberine exhibit superior binding affinities compared with the native ligand, driven mainly by strong electrostatic attractions, hydrogen bonding, and extensive hydrophobic interactions. These findings suggest that these alkaloids can effectively target the CDK2 active site and may serve as promising leads for developing novel CDK2 inhibitors for anticancer applications.

Table 1. Binding interactions of selected compounds with cyclin-dependent kinase 2

		ing interactions of	f selected compounds with				
Amino	Bond	Bond Type	Bond Category	Ligand Energy	Docking Score		
Acid	Length			(Kcal/mol)			
Native Liga	1	Τ_, .	T	T			
ASP86	5.38961	Electrostatic	Attractive Charge				
LEU83:O	2.40512		Conventional Hydrogen				
LEU83	2.09865	Hydrogen	Bond				
GLN131	1.99657	Bond					
GLU81	3.57321		Carbon Hydrogen Bond				
PHE80	3.97441						
ILE10	3.86369						
ILE10	3.70681		Pi-Sigma				
LEU134	3.97159			547.18	-8.3		
LEU134	3.90371						
VAL64	4.22471						
LEU134	5.47012	Hydrophobic					
ALA144	4.17475		Alkyl				
VAL18	4.07836						
ALA31	3.57268						
LYS33	4.3413						
VAL18	5.21804		Pi-Alkyl				
PHE80	4.52821						
Berberine	1	T		T			
GLY13	3.33661	Hydrogen Bond	Carbon Hydrogen Bond				
LEU134	3.91575		Pi-Sigma				
VAL18	4.17582		Alkyl	403.87	-9.3		
ILE10	5.26492	Hydrophobic					
VAL18	4.57209		Pi-Alkyl				
ALA31	4.94595						
Evodiamine	;						
ASP145	3.59246	Hydrogen Bond	Carbon Hydrogen Bond				
LEU134	3.78286		Pi-Sigma				
LEU134	5.29332		Alkyl				
LEU134	4.94902			1258.05	-9.8		
ALA144	4.28381	Hydrophobic					
ALA31	4.97335		Pi-Alkyl				
VAL64	5.13603						
ALA144	4.21683						
Matrine							
VAL64	4.87404						
LEU134	5.42622						
ILE10	5.36835						
VAL18	4.82339	Hydrophobic	Alkyl	341.16	-8.6		
LYS33	5.29351		AIKYI	341.10	-8.6		
VAL18	4.26169						
LEU134	5.20788						
ALA144	3.84715						

PHE80	4.35149		Pi-Alkyl		
Piperine	1	ı	•	l	
LEU83	1.81775	Hydrogen	Conventional Hydrogen Bond		
GLU81	3.65974	Bond	Carbon Hydrogen Bond		
LYS89	4.11538	E144-4:-	Pi-Cation		
GLU8	4.33496	- Electrostatic	Pi-Anion		
VAL18	4.86835			302.35	-8.6
ALA31	4.25204		A 111		
LYS33	5.43828	I Ividuambahia	Alkyl		
ALA144	5.07722	Hydrophobic			
ILE10	4.46039		Pi-Alkyl		
PHE80	4.99468		FI-AIKYI		
Sanguinarin	ne				
ASP145	5.13198	Electrostatic	Attractive Charge		
THR14	2.6483	Hydrogen	Conventional Hydrogen Bond		
GLU81	3.4525	Bond	Carbon Hydrogen Bond	561.95	
ASP145	3.78503		Carbon Hydrogen Bond		-10.3
ILE10	3.97382				
LEU134	3.79645	Hydrophobic	Pi-Sigma		
LEU134	3.66384				
Tetrandrine	:				
ASP86	3.66605				
HIS84	2.81738				
ASP86	3.33569	Hydrogen Bond	Carbon Hydrogen Bond		
GLN131	3.59836	Bond			
LYS89	3.31447			754.58	-7.5
ASP86	4.68242	Electrostatic	Pi-Anion		
ILE10	3.46323		Pi-Sigma		
ILE10	4.18733	Hydrophobic	Alkyl		
ILE10	5.35596		Pi-Alkyl		

Figure 2. The 2D and 3D binding interaction poses of the most potent Compounds with cyclin-dependent kinase 2 enzyme

ADMET Analysis

The ADMET assessment shows that most compounds have suitable molecular weights, such as berberine (318.1), evodiamine (303.14), and piperine (285.14), supporting good absorption, while tetrandrine (622.3) may show reduced permeability. TPSA values indicate varying permeability: matrine (23.55 Ų) and piperine (38.77 Ų) favor membrane diffusion, whereas the native ligand (87.89 Ų) and berberine (80.05 Ų) are less permeable. LogP values of piperine (2.50), evodiamine (2.53), and berberine (2.80) fall in the optimal range, while matrine (1.33) is more hydrophilic. Solubility is lowest for sanguinarine (logS –5.74) and highest for matrine (-1.84). Overall, piperine and evodiamine present the most balanced ADMET profiles.

Table 2. Physicochemical properties of selected derivatives

Compounds	MW	Volume	Dense	nHA	nHD	nRot	nRing	TPSA	logS	logP
Native ligand	354.22	367.8264	0.963009	7	3	8	3	87.89	-4.84894	3.995874
berberine	318.1	316.5973	1.004746	5	0	7	2	80.05	-4.14758	2.801201
evodiamine	303.14	315.0867	0.962084	4	1	0	5	39.34	-3.58261	2.535292
matrine.	248.19	261.9177	0.947588	3	0	0	4	23.55	-1.8409	1.337658
piperine.	285.14	298.4675	0.955347	4	0	4	3	38.77	-3.90497	2.509494
sanguinarine.	332.09	326.8852	1.015922	5	0	0	6	40.8	-5.74045	3.606714
tetrandrine	622.3	649.0061	0.958851	8	0	4	8	61.86	-4.71681	3.605032

Drug-likeness assessment showed that all compounds fully complied with the Lipinski, Golden Triangle, and Chelator rules, indicating suitable physicochemical characteristics and no major liabilities for oral drug development. The QED values demonstrated that evodiamine (0.692), matrine (0.653), and piperine (0.633) possess the most favorable drug-like profiles, even higher than the native ligand (0.576), suggesting strong potential for further optimization. In contrast, sanguinarine (0.365) and especially tetrandrine (0.238) exhibited low QED scores, reflecting less desirable drug-likeness. Natural product complexity was evident from the NP Scores, where tetrandrine (1.667), matrine (1.171), and sanguinarine (1.059) showed high NP values, indicating structural richness commonly associated with strong bioactivity. However, this also correlated with alerts in Pfizer and GSK rules for sanguinarine and tetrandrine, suggesting possible issues related to lipophilicity or toxicity.

Table 3. Drug-likeness properties of designed derivatives

Compounds	QED	NP Score	Lipinski rule	Pfizer Rule	GSK Rule	Golden Triangle	Chelator Rule
Native ligand	0.576	-0.747	0	0	0	0	0
berberine	0.455	-1.447	0	0	0	0	0
evodiamine	0.692	0.166	0	0	0	0	0
matrine	0.653	1.171	0	0	0	0	0
piperine	0.633	0.125	0	0	0	0	0
sanguinarine	0.365	1.059	0	1	0	0	0
tetrandrine	0.238	1.667	0	1	1	1	0

The absorption profiles of the selected compounds demonstrated considerable variation in permeability, efflux susceptibility, and predicted human intestinal absorption (HIA). Caco-2 and MDCK permeability values indicated that all compounds exhibit moderate to low passive permeability, with tetrandrine and evodiamine showing relatively better permeation (around –4.61 to –4.59), while the native ligand exhibited the lowest permeability (–5.29 to –5.08). P-gp interaction analysis revealed that most compounds act as strong P-gp inhibitors, including the native ligand, berberine, piperine, and tetrandrine, which may enhance intracellular accumulation. However, sanguinarine and native ligand showed strong P-gp substrate tendencies, suggesting susceptibility to efflux and reduced absorption. Conversely, matrine demonstrated minimal P-gp inhibition and moderate substrate probability, indicating low efflux involvement. The HIA values showed very low predicted absorption for most molecules, except evodiamine (0.010), piperine (0.0036), and sanguinarine (0.0137), which exhibited comparatively higher intestinal uptake potential. The fraction absorbed (F20%, F30%, F50%) highlighted better absorption for the native ligand and tetrandrine across multiple thresholds, whereas berberine and matrine showed poor absorption efficiency.

Table 4. Absorption parameter of selected compounds

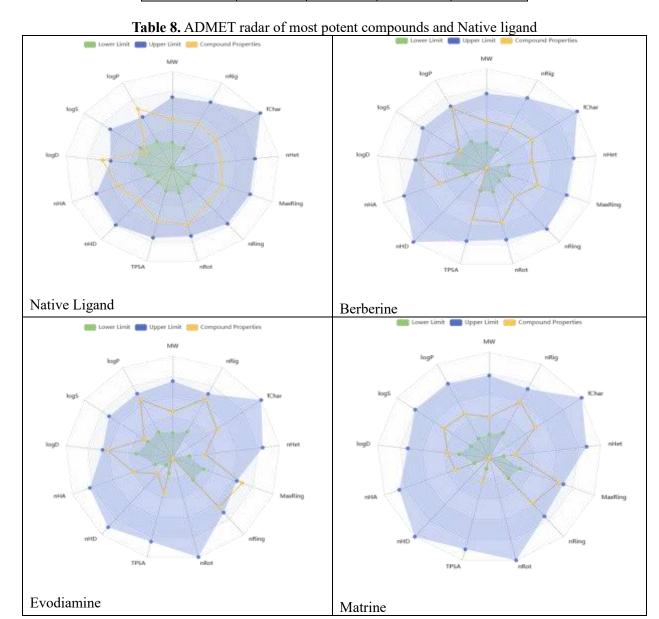
Compounds	Caco-2 Permeability	MDCK Permeability	Pgp- inhibitor	Pgp- substrate	НІА	F20%	F30%	F50%
Native ligand	-5.29131	-5.08421	0.996207	0.000101	0.000132	0.022361	0.992657	0.978368
berberine	-4.70981	-4.6189	0.970076	3.06E-06	0.002816	0.000766	0.039478	0.767635
evodiamine	-4.63479	-4.59794	0.962228	0.720104	0.010483	0.055741	0.596943	0.939191
matrine.	-4.78797	-4.95094	0.023491	0.312502	1.99E-05	0.002055	0.081941	0.054161
piperine.	-4.73117	-4.6696	0.990762	0.003481	0.003663	0.109595	0.011374	0.364159
sanguinarine.	-4.97531	-4.71088	1.23E-05	0.999581	0.013747	0.720534	0.327034	0.99841
tetrandrine	-4.61182	-4.66721	0.92162	0.579462	0.000447	0.347228	0.350452	0.994397

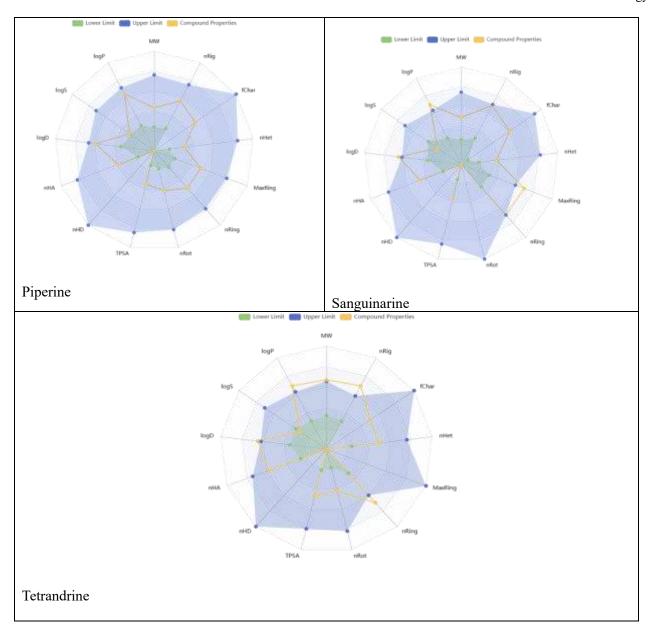
The distribution analysis revealed substantial variability among the selected compounds. Plasma protein binding (PPB%) was high for most molecules, particularly piperine (98%), evodiamine (96%), and berberine (92%), indicating limited free drug availability in circulation. In contrast, matrine showed the lowest PPB (11%), resulting in the highest unbound fraction (Fu 87.9%), suggesting greater tissue accessibility. Volume of distribution (VD) values were generally low to moderate, with berberine and sanguinarine showing relatively higher distribution compared to the native ligand. BBB permeability was notable for evodiamine (0.73) and tetrandrine (0.94), indicating significant CNS penetration potential, whereas sanguinarine and piperine had very low BBB entry. Metabolic profiling based on CYP450 interactions indicated diverse metabolic pathways. Most compounds acted as strong CYP1A2 and CYP3A4 inhibitors, particularly the native ligand, berberine, and piperine, suggesting possible drug—drug interaction risks. Matrine demonstrated minimal CYP inhibition but remained a substrate for multiple isoforms, indicating extensive metabolic turnover. Evodiamine, sanguinarine, and tetrandrine showed broad substrate tendencies across CYP2C19, CYP2C9, CYP2D6, and CYP3A4, reflecting multi-pathway metabolism.

Table 5. Distribution and metabolism parameter of selected molecules

Distribution					Metab	Metabolism									
Compo					CYP1A	12	CYP20	CYP2C19 C		C9	CYP2I	CYP2D6		CYP3A4	
unds	PPB %	VD	BBB	Fu	Inhi bitor	Subst rate									
Native ligand	75.0 5422	0.01 6597	0.12 4659	19.4 8986	0.998 774	0.595 94	0.059 013	0.086 452	0.999 425	0.124 496	0.997 06	0.205 607	0.999 753	0.000 301	
berberi ne	91.9 9773	0.21 4781	0.04 0683	6.28 7566	0.997 319	0.043 158	0.999 929	0.057 038	0.999 923	1.22E -05	3.63 E-06	2.54E -05	0.936 513	0.993 76	
evodia mine	96.1 0511	0.06 0681	0.73 0561	4.64 1536	0.204 817	0.988 071	0.996 493	0.995 965	0.987 499	0.006 643	0.000 286	0.054 784	0.962 297	0.999 978	
matrine	11.2 3014	- 0.00 204	0.23 8594	87.9 2352	6.20 E-09	0.968 039	1.23 E-05	0.999 996	1.16 E-09	2.10E -11	0.521 779	0.973 7	0.013 14	0.999 999	
piperin e.	98.0 0567	- 0.19 398	0.10 9937	1.89 3588	0.999 995	0.811 113	0.316 511	0.239 1	0.043 279	0.050 652	0.997 622	0.999 995	0.984 327	0.000 7	
sanguin arine.	65.1 1207	0.10 3807	0.01 2045	37.8 7719	1	0.999 995	0.999 972	0.998 513	0.028 329	0.999 9	0.999 997	0.999 977	1	0.115 263	
tetrandr ine	75.0 1015	0.15 2376	0.94 0531	23.6 2958	0.000 232	1	2.75 E-05	0.999 999	4.70 E-05	0.999 183	0.001 264	0.999 999	0.017 445	0.999 979	

The excretion analysis of the selected compounds revealed notable differences in clearance and half-life. Tetrandrine displayed the highest plasma clearance (9.23) and the longest half-life (2.56 h), indicating prolonged systemic exposure. Matrine also showed an extended half-life (1.95 h), whereas berberine and piperine demonstrated shorter half-lives (<0.50 h), suggesting rapid elimination. The native ligand and evodiamine exhibited moderate clearance and half-life values, representing balanced excretion behavior. Toxicity predictions showed considerable variability. Hepatotoxicity (H-HT) and DILI risk were highest for evodiamine and the native ligand, while tetrandrine showed the lowest DILI probability, suggesting reduced liver toxicity. Ames toxicity remained low for most compounds except piperine and sanguinarine, which showed higher genotoxic potential. Rat oral acute toxicity indicated moderate toxicity for sanguinarine and evodiamine. FDAMDD values were elevated for tetrandrine and sanguinarine, indicating potential safety concerns. Skin sensitization was moderate for most compounds, while carcinogenicity was highest in sanguinarine and piperine, requiring caution for long-term use. Eye corrosion/irritation risk was extremely low for the native ligand but higher for berberine, sanguinarine, and tetrandrine. Respiratory toxicity predictions indicated higher risk for berberine and evodiamine.


Table 6. Excretion and Toxicity parameters of selected compounds


	Excretion		Toxici	Toxicity										
Compo unds	CL- plasm a	T1/2	H- HT	DILI	Ame s Toxi city	Rat Oral Acute Toxicity	FDA MDD	Skin Sensitiz ation	Carcinog enicity	Eye Corro sion	Eye Irrita tion	Respirat ory Toxicity		
Native ligand	8.2976 29	0.81 0419	0.70 0608	0.95 3436	0.90 0551	0.068516	0.670 867	0.89882	0.825187	3.65E- 09	0.041 739	0.750169		
berberi ne	5.0452 51	0.44 6098	0.15 6075	0.60 0238	0.16 2508	0.275118	0.240 343	0.92384	0.194925	0.387 296	0.839 023	0.970151		
evodia mine	7.3895 29	0.98 9893	0.92 4523	0.97 6234	0.54 2349	0.737804	0.595 334	0.95570 9	0.397179	0.000 107	0.652 814	0.935592		
matrine	7.0146 99	1.95 6742	0.57 9397	0.11 9967	0.49 9717	0.245532	0.372 944	0.68641 7	0.515825	0.490 816	0.878 927	0.637463		
piperin e.	5.5053 5	0.47 0164	0.63 1062	0.79 896	0.76 0771	0.272134	0.738 733	0.60695 9	0.732121	0.005 49	0.633 499	0.748688		
sanguin arine.	2.9119 32	0.55 811	0.16 1298	0.81 8782	0.80 7573	0.826051	0.934 141	0.92472	0.916587	0.001 447	0.930 735	0.912754		
tetrandr ine	9.2376 86	2.56 7326	0.58 0452	0.01 2365	0.64 8809	0.617789	0.955 252	0.61972	0.814285	8.19E- 07	0.005 789	0.74309		

The environmental toxicity assessment of the designed molecules showed notable differences in ecological impact. Bioaccumulation potential (BCF) was highest for tetrandrine (2.25) and sanguinarine (1.98), indicating greater environmental persistence, while matrine (0.38) showed minimal accumulation risk. IGC50 values revealed that tetrandrine and sanguinarine exerted stronger toxicity toward green algae, whereas matrine exhibited the lowest inhibitory effects. Similar trends were observed in aquatic toxicity profiles. Fish toxicity (LC50FM) and Daphnia magna toxicity (LC50DM) were highest for sanguinarine and tetrandrine, highlighting their elevated toxicity to aquatic organisms. In contrast, matrine consistently showed the least toxicity in all environmental models.

Table 7. Environmental toxicity profile of designed molecules

Tuble 7. Environmental toxicity prome of designed more dies										
Compounds	BCF	IGC50	LC50FM	LC50DM						
Native ligand	1.349933	3.687039	4.455354	4.680451						
berberine	1.029766	3.703506	4.817569	5.220547						
evodiamine	1.527477	4.214102	5.019686	5.459352						
matrine.	0.380249	2.761437	3.26381	4.053869						
piperine.	1.004724	3.647	4.615218	5.2266						
sanguinarine.	1.981364	4.413096	5.661905	6.21209						
tetrandrine	2.250586	4.533112	5.347493	6.003566						

Conclusion

The comprehensive computational evaluation of six bioactive alkaloids against CDK2 demonstrates their strong potential as anticancer therapeutic candidates. Molecular docking revealed that sanguinarine, evodiamine, and berberine exhibit superior binding affinities compared with the native ligand, driven by robust hydrogen bonding, electrostatic forces, and extensive hydrophobic interactions within the CDK2 active site. Among them, sanguinarine showed the most remarkable affinity, followed closely by evodiamine and berberine, confirming their suitability as potent CDK2 inhibitors. ADMET and drug-likeness assessments further supported the pharmacokinetic feasibility of these compounds, with evodiamine and berberine showing balanced properties that favor potential oral bioavailability and metabolic stability. Although some toxicity and environmental concerns were noted for specific molecules, the overall profiles of the three potent alkaloids indicate manageable risks with appropriate optimization. Collectively, these findings highlight berberine, evodiamine, and sanguinarine as promising lead molecules for future anticancer drug development targeting CDK2. Their favorable binding behavior, structural diversity, and biologically relevant pharmacokinetic attributes warrant further in vitro and in vivo validation to advance them as viable therapeutic candidates.

References

1. Knudsen ES, Witkiewicz AK, Sanidas I, Rubin SM. Targeting CDK2 for cancer therapy. Vol. 44, Cell Reports. 2025.

- 2. Zeng Y, Ren X, Jin P, Fan Z, Liu M, Zhang Y, et al. Inhibitors and PROTACs of CDK2: challenges and opportunities. Vol. 19, Expert Opinion on Drug Discovery. 2024. p. 1125–48.
- 3. Arora M, Moser J, Hoffman TE, Watts LP, Min M, Musteanu M, et al. Rapid adaptation to CDK2 inhibition exposes intrinsic cell-cycle plasticity. Cell. 2023;186(12):2628-2643.e21.
- 4. Bai Y, Aodeng G, Ga L, Hai W, Ai J. Research Progress of Metal Anticancer Drugs. Vol. 15, Pharmaceutics. 2023.
- 5. Kumar G, Virmani T, Sharma A, Pathak K. Codelivery of Phytochemicals with Conventional Anticancer Drugs in Form of Nanocarriers. Vol. 15, Pharmaceutics. 2023.
- 6. Huang Y, Cao S, Zhang Q, Zhang H, Fan Y, Qiu F, et al. Biological and pharmacological effects of hexahydrocurcumin, a metabolite of curcumin. Vol. 646, Archives of Biochemistry and Biophysics. 2018. p. 31–7.
- 7. Zhang L, Yan M, Liu C. A comprehensive review of secondary metabolites from the genus Agrocybe: Biological activities and pharmacological implications. Vol. 15, Mycology. 2024. p. 162–79.
- 8. Onukwuli CO, zuchukwu CEI, Ugwu OPC. Exploring Phytochemicals for Diabetes Management: Mechanisms, Efficacy, and Future Directions. Newport Int J Res Med Sci. 2024;5(2):7–17.
- 9. Koche D, Shirsat R, Kawale M. An Overerview of Major Classes of Phytochemicals: Their Types and Role in Disease Prevention. Hislopia J. 2016;9(1/2):1–11.
- 10.Rozirwan, Nanda, Nugroho RY, Diansyah G, Muhtadi, Fauziyah, et al. Phytochemical composition, total phenolic content and antioxidant activity of Anadara granosa (Linnaeus, 1758) collected from the east coast of South Sumatra, Indonesia. Baghdad Sci J. 2023;20(4):1258–65.
- 11.He A, Wu M, Pu Y, Li R, Zhang Y, He J, et al. Fluoxetine as a Potential Therapeutic Agent for Inhibiting Melanoma Brain and Lung Metastasis: Induction of Apoptosis, G0/G1 Cell Cycle Arrest, and Disruption of Autophagy Flux. J Cancer. 2024;15(12):3825–40.
- 12. Smith JJ, Xiao Y, Parsan N, Medwig-Kinney TN, Martinez MAQ, Moore FEQ, et al. The SWI/SNF chromatin remodeling assemblies BAF and PBAF differentially regulate cell cycle exit and cellular invasion in vivo. PLoS Genet. 2021;18(1).
- 13. Swanson K, Walther P, Leitz J, Mukherjee S, Wu JC, Shivnaraine R V., et al. ADMET-AI: a machine learning ADMET platform for evaluation of large-scale chemical libraries. Bioinformatics. 2024;40(7).
- 14. Venkataraman M, Rao GC, Madavareddi JK, Maddi SR. Leveraging machine learning models in evaluating ADMET properties for drug discovery and development. ADMET DMPK. 2025;13(3).
- 15.Zuo Y, Zhang C zheng, Ren Q, Chen Y, Li X, Yang J rui, et al. Activation of mitochondrial-associated apoptosis signaling pathway and inhibition of PI3K/Akt/mTOR signaling pathway by voacamine suppress breast cancer progression. Phytomedicine. 2022;99.
- 16. Saini N, Goswami V, Thakor E, Vasava M, Patel B. Anticancer Potential of Piperidine Containing Small Molecule Targeted Therapeutics. Vol. 9, ChemistrySelect. 2024.
- 17. Duda-Madej A, Viscardi S, Szewczyk W, Topola E. Natural Alkaloids in Cancer Therapy: Berberine, Sanguinarine and Chelerythrine against Colorectal and Gastric Cancer. Int J Mol Sci. 2024;25(15).
- 18. Shaheen A, Fida H, Akhmedov S, Rasulbek E, Ataullaev Z. In Silico Study of Alkaloids as Potential Cyclin-Dependent Kinase (CDK) Inhibitors. 2025;1(4):324–35. Available from: https://jpscc.samipubco.com/article 235766 f9de3c3b67552b56d5e748fb40a24329.pdf
- 19.Khan S, Kale M, Siddiqui F, Nema N. Novel pyrimidine-benzimidazole hybrids with antibacterial and antifungal properties and potential inhibition of SARS-CoV-2 main protease and spike glycoprotein. Digit Chinese Med. 2021;4(2):102–19.
- 20. Shastri MA, Gadhave R, Talath S, Wali AF, Hani U, Puri S, et al. In silico Screening, Synthesis, and in vitro Enzyme Assay of Some 1,2,3-Oxadiazole-linke Tetrahydropyrimidine-5-carboxylate Derivatives as DPP-IV Inhibitors for Treatment of T2DM. Chem Methodol. 2024;8(11):800–19.
- 21. Suryawanshi RM, Shimpi RB, Muralidharan V, Nemade LS, Gurugubelli S, Baig S, et al. ADME, Toxicity, Molecular Docking, Molecular Dynamics, Glucokinase activation, DPP-IV, α-amylase, and α-glucosidase Inhibition Assays of Mangiferin and Friedelin for Antidiabetic Potential. Chem Biodivers [Internet]. 2025 Dec 23; Available from: https://onlinelibrary.wiley.com/doi/10.1002/cbdv.202402738
- 22. Suryawanshi RM, Shimpi RB, Muralidharan V, Nemade LS, Gurugubelli S, Baig S, et al. ADME, Toxicity, Molecular Docking, Molecular Dynamics, Glucokinase activation, DPP-IV, α-amylase, and α-glucosidase Inhibition Assays of Mangiferin and Friedelin for Antidiabetic Potential. Chem Biodivers. 2025;22(5).