
Available online at: https://jazindia.com    1354 

Journal of Advanced Zoology 

ISSN: 0253-7214 
Volume 44 Issue 4 Year 2023 Page 1354-1366 

  
 

 

 

A Mathematical Model On Three Species Multi Ecology Consisting Of Host-

Commensal-Mutualism 
  

Masade Raj Kumar1 and Bitla Hari Prasad2*
 

 
1Research Scholar, Chaitanya (Deemed to be University), Telangana State, India 

2*
Professor of Mathematics, Chaitanya (Deemed to be University), Telangana State, India 

*E-mail: sumathi_prasad73@yahoo.com 

 

Received: November 28, 2022 

Revised: March 21, 2023 

Accepted: April 15, 2023 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

CC License  

CC-BY-NC-SA 4.0 

Abstract 
 

In this study, we develop a mathematical model to analyze the complex 

interactions among three species (S1, S2, S3) in a multi-ecological 

system involving host-commensal-mutualistic relationships. The 

system comprises of two hosts (S2, S3) and two commensals (S1, S2) ie, 

S2 is the host of S1 and commensal of the host S3. Further S1 and S3 are 

mutuals. Here all three species are having limited resources quantized 

by the respective carrying capacities. The mathematical model 

equations constitute a set of three first order non-linear simultaneous 

coupled differential equations in the strengths N1, N2, N3 of S1, S2, S3 

respectively. All accessible critical points are recognized based on the 

primary model equations and criteria for their consistency are 

explained. If all the latent roots of the peculiar equation are either 

negative or zero then the model would be balanced otherwise 

imbalanced. Curvatures of the perturbations upon the critical points are 

analyzed. Further, we explain the universal consistency by appropriate 

Liapunov’s method and the expansion rates of the species are 

numerically calculable victimization Runge-Kutta fourth order scheme. 

 

Keywords: Balanced, commensal, critical point, host, imbalanced, 

latent root, mutualism, trajectory. 
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INTRODUCTION 
 

Ecology is the study of living organisms in relation to their environments, examining how they interact with 

their habitats and each other. As a branch of evolutionary biology, it seeks to understand the mechanisms 

regulating species in nature, including population dynamics, species distribution, and ecological relationships 

such as predator-prey interactions and competition. 

The field of ecology is broadly categorized into autecology (the study of individual species populations) and 

synecology (the study of interactions among multiple species communities). Synecological research has led 

to the development of the ecosystem concept, which integrates living organisms-plants, animals, and 

microorganisms-with their physical surroundings. This foundational idea emerged from the collective work 

of generations of biologists, ecologists, and botanists. Theoretical ecology has been significantly advanced 

by researchers such as Gillman [3] and Kot [4], with contributions from both ecologists and mathematicians. 

Mathematical ecology, in particular, is divided into autecology and synecology, as explored in the works of 

Anna Sher [1], Arumugam [2], and Sharma [28]. 

 

http://www.thesaurus.com/browse/curvature
http://www.thesaurus.com/browse/upon
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The Role of Mathematical Modelling in Biological Systems 
Mathematical models serve as vital tools in biological research, enabling scientists to analyze complex 

interactions through iterative data collection and theoretical simulations. When properly constructed, these 

models reveal relationships between physical variables and underlying processes, guiding experimental 

design and data interpretation. Given the complexity of real-life systems, mathematical formulations often 

replicate experimental outcomes without fully representing the actual mechanisms. Despite this, such models 

are invaluable in predicting system behavior and exploring interactions among different components. 

Empirical adjustments allow researchers to refine models, yielding insights applicable to real-world 

scenarios. 

Several researchers have contributed to the field of biological modelling, Ma [6], Moghadas [7], Murray [8], 

and Sze-Bi Hsu [30] established foundational frame works. In Competitive Ecosystems: Srinivas [29] 

analyzed two- and three-species systems with limited/unlimited resources. Prey-Predator Dynamics: Narayan 

[9] studied models incorporating prey cover and alternate food sources for predators. Commensalism 

Models: Kumar [5] explored mathematical representations of commensal relationships. Syn-Ecosystems: 

Prasad [10–27] investigated continuous and discrete models for two-, three-, and four-species systems. 

The current work presents an analytical and numerical examination of a three-species ecological system (S1, 

S2, S3) with limited resources. This study aims to deepen our understanding of such interactions through 

mathematical analysis and simulations. 

  

MATHEMATICAL  MODEL      

 

Notation Appropriated 

 iN t   :   The population strength of iS  at time t , 1,2,3i   

t  :    Time instant                                                                                                                                

ia  :    Natural growth rate of iS , 1,2,3i  

iia  :    Self inhibition coefficients of iS ,  1,2,3i  

13 23,a a  :    Interaction coefficients of 1S  due to  3S  and 2S  due to 3S
 

12 31,a a   :    Interaction coefficients of 1S  due to  2S  and 3S  due to 1S
 

i
i

ii

a
k

a
  :   Carrying capacities of iS ,  1,2,3i  

 

Fundamental Equations 

The model equations for syn ecology is given by the following system of first order non-linear ordinary 

differential equations. 

 1
1 1 11 1 12 2 13 3

dN
N a a N a N a N

dt
                                      (1) 

 2
2 2 22 2 23 3

dN
N a a N a N

dt
                                      (2) 

 

 3
3 3 33 3 31 1

dN
N a a N a N

dt
                                       (3) 

 

CRITICAL POINTS 

 

The system under investigation has eight critical points 0, 1,2,3idN
i

dt
   at given by 

Fully washed out state. 

1 1 2 3: 0, 0, 0E N N N    
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States in which only two of the tree species are washed out while the other one is not. 

2 1 2 3 3: 0, 0,E N N N k      

3 1 2 2 3: 0, , 0E N N k N      

4 1 1 2 3: , 0, 0E N k N N      

 

States in which only one of the tree species is washed out while the other two are not. 

23 3
5 1 2 2 3 3

22

: 0, ,
a k

E N N k N k
a

     

13 3
6 1 1 2 3 3

11

: , 0,
a k

E N k N N k
a

     

12 2
7 1 1 2 32

11

: , , 0
a k

E N k N k N
a

     

 

The normal steady state. 

 
1 22 33 12 2 33 12 23 3 13 22 3

18

11 22 33 12 23 31 13 22 31

: ;
a a a a a a a a a a a a

E N
a a a a a a a a a

  


 
 

 
11 2 33 11 23 3 1 23 31 13 2 31

2

11 22 33 12 23 31 13 22 31

;
a a a a a a a a a a a a

N
a a a a a a a a a

  


 
 

 
 

CONSISTENCY ANALYSIS 

 

Let  1 2 3, ,N N N N N U    

where   1 2 3, ,
T

U u u u  is very small perturbation upon the critical point  1 2 3, ,N N N N  . 

The fundamental equations (1), (2) and (3) are quasi-linearized to obtain the equations for the perturbed state 

as, 
dU

AU
dt

  

 

Where  

 

1 2 3 1 11 11 12 13 12 13

2 3 22 22 23 23

3 3 131 3 33 31

2

0 2

0 2

a a N a N a N a N a N

A E a a N a N a N

a N a a N a N

   
 

   
 

   

  (4) 

 

The peculiar equation for the scheme is 0A I   

If all the latent roots are either negative or zero, then critical point is balanced otherwise imbalanced. 

 

 

Consistency of
1 1 2 3: 0, 0, 0E N N N    

In this state,  we have  
1

1 2

3

0 0

0 0

0 0

a

A E a

a

 
 


 
  

 

 

The peculiar equation is given by    1 2 3 0a a a        

The latent roots are 
1 2 3, ,a a a .Since all the three roots are positive. 

 
11 22 3 12 2 31 1 22 31

3

11 22 33 12 23 31 13 22 31

a a a a a a a a a
N

a a a a a a a a a

 


 
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Hence, the point is imbalanced and the solutions are  
1

1 10

a tu u e ; 2
2 20

a tu u e ; 3
3 30

a t
u u e    (5) 

Where 
10 20 30, ,u u u are the primary values of 

1 2 3, ,u u u respectively. 

The trajectories in 
1 2 ,u u

2 3u u and 
3 1u u planes are      

1 1 1

1 2 31 2 3
a a ax x x   

Where 31 2
1 2 3

10 20 30

,  and 
uu u

x x x
u u u

    

 

Consistency of 
2 1 2 3 3: 0, 0,E N N N k    

At this critical point,  we have  
1 13 3

2 2 23 3

31 3 3

0 0

0 0

0

a a k

A E a a k

a k a

 
 

 
 
  

 

 

1 13 3 2 23 3 3, ,a a k a a k a   are the latent roots. Here only one of these three roots is negative .Hence the point is 

imbalanced, the solution curves are 
 1 13 3

1 10

a a k t
u u e


 ;

 2 23 3
2 20

a a k t
u u e


 ; 3

3 30

a t
u u e


             (6) 

And the trajectories of perturbations are given by      
1 1 1

31 13 3 2 23 31 2 3
aa a k a a kx x x


    

 

Consistency of
3 1 2 2 3: 0, , 0E N N k N    

In this case, we have  
1 12 2

3 2 23 2

3

0 0

0

0 0

a a k

A E a a k

a

 
 

 
 
  

 

The latent roots are 1 12 2 2 3, ,a a k a a  . Since one of the three roots is lesser than zero and other two roots are 

greater than zero, hence the point is imbalanced. 

The solutions are  

 1 12 2
1 10

a a k tu u e


 ; 23 2 30 23 2 30 32
2 20

2 3 2 3

a ta ta k u a k u
u u e e

a a a a

 
   

  
and 3

3 30

a t
u u e         (7) 

 

The curvatures of the perturbations of the above equations are 

   
1 1

31 12 21 3 ;aa a kx x 
 

 
 

 
32

23 2 30 23 2 30
1 12 2 1 12 22 1 1

2 3 20 2 3 20

1
aa

a a k a a k
a k u a k u

x x x
a a u a a u



 
 

   
   

 

 
 

 

2

3
23 2 30 23 2 30 3

2 3

2 3 20 2 3 20

1

a

aa k u a k u x
x x

a a u a a u



 
   

   
 

 

 

Consistency of
4 1 1 2 3: , 0, 0E N k N N    

 

At this critical point the matrix given by  
1 12 3 13 1

4 2

3 31 1

0 0

0 0

a a k a k

A E a

a a k

 
 


 
  

   

 

The latent roots are 1 2 3 31 1, ,a a a a k  .Since one the three roots is lesser than zero and other two roots are 

greater than zero, hence the point is imbalanced. The equations yield the solutions,  

   3 31 11 2
1 10 2 3 2 3

a a k ta t a tu u e e e
     ; 2

2 20

a tu u e ;
 3 31 1

3 30

a a k t
u u e


    (8) 
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Where 12 1 20
2

2 1

0
a k u

a a
  


and 13 1 30

3

1 3 31 1

0
a a k

a k u

a 
  


 

 

The curvatures of the perturbations of perturbed species are given by    
1 1

2 3 31 12 3
a a a kx x  and 

   
31

2 3 32 2
2 21 2 2

10 10 10

1 ;
aa

a a
x

x x x
u u u

   
    
 

   
1 2

2 3 3 32
3 31 3 3

10 10 10

1
a a

a a
x

x x x
u u u

   
    
 

 

 

Consistency of 23 3
5 1 2 2 3 3

22

: 0, ,
a k

E N N k N k
a

     

In this case, the matrix  5A E is given by    
1

5 2 23 2 2

31 3 3

0 0

0

0

A E a a k

a k a

 
 

   
 
  

 

 

Where 12 23 3
1 1 12 2 13 3

22

0
a a k

a a k a k
a

 
      

 
and 

2

23 3
2 23 2

22

0
a k

a k
a

 
    

 
 

 

The latent  roots of  
5E are  1 2 23 2 3, ,a a k a    . Since one of the three roots is greater than zero and other 

two roots are lesser than zero. Hence, the point 
5E is imbalanced. The solution curves are given by 

1
1 10

tu u e ;
 

 

 
2 30 2 302 23 2 3

2 20

2 3 23 2 2 3 23 2

a a k t a tu u
u u e e

a a a k a a a k

  
  

   
     

; 3
3 30

a t
u u e


       (9) 

 

The curvatures of the perturbations of perturbed species are given by    
1 1

1 31 3
ax x


  and  

 
 

 

 
 

2 23 2 3
2 30 2 30

1 12 1 1

2 3 23 2 20 2 3 23 2 20

1
a a k au u

x x x
a a a k u a a a k u

  

 
  

   
     

 

 
 

 

2 23 2
2 30 2 30 3

32 3

2 3 23 2 20 2 3 23 2 20

1
a a k

a
u u x

x x
a a a k u a a a k u

  
   

       
 

Consistency of 13 3
6 1 1 2 3 3

11

: , 0,
a k

E N k N N k
a

     

At this point, we have  

 1 13 3 2 3

6 2 23 3

3

0 0

0 0

a a k

A E a a k

a

    
 

  
  

 

Where 12 13
2 12 1 3

11

0
a a

a k k
a

 
    

 
,

2

13
3 13 1 3

11

0
a

a k k
a

 
    

 
 

 

Here, the latent roots are  1 13 3 2 23 3,a a k a a k    and
3a . Since two of the three roots  1 13 3 3,a a k a    are 

lesser than zero and one root 2 23 3a a k is greater than zero. Hence the point 
6E is imbalanced and the 

solution curves are 

 

     1 13 3 2 23 3 3
1 10 1 2 1 2

a a k t a a k t a t
u u B B e B e B e

   
     ;

 
 2 23 3

2 20

a a k t
u u e


 ; 3

3 30

a t
u u e


  (10) 

Where 
 

 2 20 3 30
1 2 1 13 3 3

1 2 13 3 23 3 1 13 3 3

0;  with 
u u

B B a a k a
a a a k a k a a k a

 
    

    
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The curvatures of the perturbations are given by 

   
1 1

2 23 3 32 3
a a k ax x


  ;    

3

1 13 3 2 23 3
10 1 2 1 2 2

2 23 31 2 2

10 10 10

a

a a k a a k

a a k
u B B B x B

x x x
u u u


 




  
   
 

and 

   

2 23 3

1 13 3 3
10 1 2 1 3 2 3

31 3 3

10 10 10

a a k

a a k a

a
u B B B x B x

x x x
u u u





  

   
 

 

 

Consistency of 12 2
7 1 1 2 32

11

: , , 0
a k

E N k N k N
a

     

At this critical point, the matrix  7A E  is given by  

 1 12 2 2 3

7 2 23 2

4

0

0 0

a a k

A E a a k

    
 

  
  

  

Where 
2

12 2
2 12 1

11

0
a k

a k
a

    , 12 2
3 13 1

11

0
a k

a k
a

 
    

 
, 31 12 2

4 3 31 1

11

0
a a k

a a k
a

 
     

 
 

 

The latent roots are  1 12 2 2 4, ,a a k a    . Since one of the three roots 
4  is greater than zero, hence the 

point 
7E  is imbalanced. 

The solution curves are given by 

   1 12 2 2 4
1 10 1 2 1 2

a a k t a t tu u X X e X e X e
            

  2 4
2 20 1 1

a t tu u e e    ; 4
3 30

tu u e                                                                              
(11) 

where
 

 
 2 20 1 2 1 3 30

1 1 12 2 2 2

1 12 2 2 1 12 2 4

,with ; 0
u u

X a a k a X
a a k a a a k

    
    

   
; 23 2 30

1

2 3

0
a k u

a a
  


and

 1 12 2 2

10 1 2 2 314 4
1 3 3

10 10 10

;

a a k a
u X X X xX

x x x
u u u

  

   
   
 

2

20 1 1 34
2 3

20 20

a
u x

x x
u u



   
  
 

 are the trajectories of 

perturbed species. 

 

Consistency of 
 

1 22 33 12 2 33 12 23 3 13 22 3
18

11 22 33 12 23 31 13 22 31

: ;
a a a a a a a a a a a a

E N
a a a a a a a a a

  


 
 

 
11 2 33 11 23 3 1 23 31 13 2 31

2

11 22 33 12 23 31 13 22 31

;
a a a a a a a a a a a a

N
a a a a a a a a a

  


 
 

 
 

In this critical point, we get  
1 1 12 8 13 8

8 2 2 23 8

31 8 3 3

0

0

a a a

A E a a

a a

   
 

  
 
    

 

 

Where  1 2 31 1 11 12 132a a N a N a N      

 2 32 2 22 232a a N a N    and  3 13 3 33 312a a N a N     

 

After applying  8 0A E I  ,  

the characteristic equation will be 3 2

1 2 3 0b b b           (12) 

Where 1 11 1 22 2 33 3b a N a N a N     

 
11 22 3 12 2 31 1 22 31

3

11 22 33 12 23 31 13 22 31

a a a a a a a a a
N

a a a a a a a a a

 


 
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   2 22 33 2 3 11 22 12 21 1 2 11 33 13 31 1 3b a a N N a a a a N N a a a a N N      

 3 11 22 33 12 21 33 13 31 22 1 2 3b a a a a a a a a a N N N    

 

According to Routh-Hurwitz’s criteria, the necessary and sufficient conditions for local 

stability of co-existent points are  1 3 3 1 2 30, 0 & 0b b b b b b     

It is evident that
1 0b  and  1 2 3 1 2 311 22 33 12 21 33 13 31 22a a a N N N a a a a a a N N N 

 
 

Thus the stability of co-existent state is determined by the sign of 
1 2 3b b b . 

 

By the calculations, we obtain 

   
2 2 22 2 2

1 2 3 11 22 11 12 21 1 2 11 33 11 13 31 1 3 22 33 2 3b b b a a a a a N N a a a a a N N a a N N       

   
2 2 22 2 2

22 11 12 21 22 2 1 33 22 3 2 33 11 13 31 33 3 1 11 22 33 1 2 32 0a a a a a N N a a N N a a a a a N N a a a N N N        

 

Hence the co-existent state is locally asymptotically stable. 

Let 1 2 3, ,   be the three roots of the equation (12), then the solution of the perturbation equations is 

 31 2
1 10 1 1 1

tt tu u A e B e C e
     

 2 31
2 20 2 2 2

tt tu u A e B e C e
    and 

 31 2
3 30 3 3 3

tt tu u A e B e C e
            (13) 

Where 2

1 10 1 1 1 1 1 20 1 30A u E F G u H u          

 

2 3 2 3 2 11 22 33 1 22 33 1 13 32, ,E a N a N F a a N N G a a N N    and 
1 13 22 1 2 1 13 1H a a N N a N   

  

2

10 2 2 2 2 2 20 2 30

1

2 1 2 3

u E F G u H u
B

       


   
 

2 3 1 3 3 1 1 12 22 33 2 22 23 33 2 12 3 12 12 2, ,E a N a N F a a N N a N G a N a N a N          

1 1 1 2 1 2 12 13 3 13 12 23 13 22 13 2H a N a N a a N N a a N N a N        

  

2

10 3 3 3 3 3 20 3 30

1

3 1 3 2

u E F G u H u
C

       


   
 

2 3 1 3 13 22 33 3 22 23 3 12, ,E a N a N F a a N N G a N    and  

1 1 2 1 2 1 33 13 12 23 13 22 12 23H a N a a N N a a N N a a N N     

  

2

20 1 1 1 1 1 10 1 30

2

1 2 1 3

u P Q R u T u
A

       


   
 

 1 3 1 3 2 21 11 33 1 11 33 13 31 1 21 1 2 23, , ,P a N a N Q a a a a N N R a N T a N        

 
  

2

20 2 2 2 2 2 10 2 30

2

2 1 2 3

u P Q R u T u
B

       


   
 

3 1 1 3 2 3 2 1 22 23 11 2 31 13 2 31 23 2 23 3 13 23, , ,P a N a N Q a a N N R a a N N T a N a a N N        

 
  

2

10 3 3 3 3 3 10 3 30

2

3 1 3 2

u P Q R u T u
C

       


   
 

3 1 1 3 2 3 2 1 23 23 11 3 31 13 3 31 23 3 23 3 11 23, , ,P a N a N Q a a N N R a a N N T a N a a N N        

 
  

2

30 1 1 1 1 1 20 1 10

3

1 2 1 3

' ' ' 'u P Q R u T u
A

       


   
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1 1 2 1 21 11 22 2 1 11 22 1 31 21 1 31 3 22 31' , ' , ' , 'P a N a N Q a a N N R a a N T a a a N        

  

2

30 2 2 1 1 1 20 1 10

3

2 3 3 1

' ' ' 'u P Q R u T u
B

       


   
 

1 2 1 2 1 22 11 22 2 11 22 2 31 21 1 31 3 22 31' , ' , ' , 'P a N a N Q a a N N R a a N T a a a N        

 
  

2

30 3 3 3 3 3 20 3 10

3

3 2 3 1

' ' ' 'u P Q R u T u
C

       


   
 

2 1 1 2 1 23 22 11 3 11 22 3 31 21 3 31 3 22 31' , ' , ' , 'P a N a N Q a a N N R a a N T a a a N        

 

LIAPUNOV’S METHOD OF UNIVERSAL CONSISTENCY: 

 

We discussed the local consistency of all eight critical points. From which only one point  1 2 38 , ,E N N N  is 

balanced and rest of them are imbalanced. We now examine the universal consistency of dynamical system 

(1), (2) and (3) at this state by suitable Liapunov’s function. 

 

Theorem : The equilibrium state  8 1 2 3, ,E N N N  is globally asymptotically stable.

 Proof    Let us consider the following Liapunov’s function

 
  1 2

1 1 2 21 2 3 1 1 2
1 2

, , log log
N N

V N N N N N N d N N N
N N

    
         

    

3
3 32 3

3

log
N

d N N N
N

  
     

  
 

where 
1d  and 

2d  are suitable constants to be determined as in the subsequent steps. 

 

Now, the time derivative of V, along with solutions of (1), (2) and (3) can be written as

 31 2 3 31 1 2 2
1 2

1 2 3

N N dNN N dN N N dNdV
d d

dt N dt N dt N dt

      
            
     

 

 1 21
1 1 11 1 12 1 2 13 1 3

1

N NdV
a N a N a N N a N N

dt N

 
     
 

 

   32 2 232
1 2 2 22 2 23 2 3 2 3 3 33 3 31 1 3

2 3

N NN N
d a N a N a N N d a N a N a N N

N N

   
          

   
 

       
2

1 1 2 1 311 1 12 1 2 13 1 3a N N a N N N N a N N N N          

         
2 2

2 3 2 3 3 11 22 2 23 3 2 2 33 3 31 3 1d a N N a N N N N d a N N a N N N N             
      

 

     
2

1 2 311 1 1 22 2 2 33 3a N N d a N N d a N N       
     1 21 11 12 12 1 22 d a a a N N N N     

       1 3 2 32 11 33 13 2 31 1 3 1 2 22 33 1 22 2 32 2      (14)d a a a d a N N N N d d a a d a N N N N          

 

The positive constants 1l  and 2l   as so chosen that, the coefficients of   1 1 2 2N N N N  , 

  1 1 3 3N N N N   and   2 2 3 3N N N N   in (14) vanish. 

 

Then we have
 

2

12
1

11 22

0
4

a
d

a a
   and 

2 2

12 23
2 2

11 22 33

0
16

a a
d

a a a
  , with this choice of the constants 

1d  and 2d . 

     
2

12 2312
11 1 1 2 2 3 3

11 11 22

0
2 4

a aadV
a N N N N N N

dt a a a

 
        

 
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Hence, the steady state is universally asymptotical balanced. 

 

NUMERICAL APPROACH 

 

The numerical solutions of the growth rate equations computed employing the fourth order Runge-Kutta 

method for specific values of the various parameters that characterize the model and the initial conditions. 

The results are illustrated in Figures from1 to 8. 

 

 
Figure(1):  Variation of N1, N2 and N3 against time (t) for

  
a1=0.234;a11=12.96;a12=0.414;a13=0.306;a2=1.314;a22=2.34;’a23=0.486;a3=0.414;a33=0.486;a31=0.954,

N1[t0]=1.458;N2[t0]=0.378;N3[t0]=4.23 
 

 
Figure(2) :  Variation of N1, N2 and N3 against time (t) for 

a1=0.07;a11=1.488,a12=0.16;a13=0.76;a2=0.552;a22=0.84;a23=0.392;       

a3=0.6;a33=0.288;a31=0.552,N1[t0]=0.504;N2[t0]=0.95;N3[t0]=1.512 
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Figure(3) : Variation of N1, N2 and N3 against time (t) for 

 
a1=0.13;a11=9.1;a12=0.4;a13=4.2;a2=0.2;a22=2.7;a23=0.53; 

a3=0.23;a33=1.33;a31=0.4;N1[t0]=1.37;N2[t0]=1.75;N3[t0]=0.81
 

 

 
Figure(4) :  Variation of N1, N2 and N3 against time (t) for 

 a1=0.17;a11=0.97;a12=0.13;a13=0.37;a2=0.1;a22=0.53;a23=0.3;  

a3=0.97;   a33=0.97;a31=0.3;N1[t0]=3.12;N2[t0]=1.93;N3[t0]=1.33 

 

 

 
Figure(5) :  Variation of N1, N2 and N3 against time (t) for

                                          
a1=3.872; a11=1.232;a12=0.704;a13=0.576; a2=3.736;  

a22=0.552;a23=0.312, a3=4.736;a33=0.944;a31=0.208;N1[t0]=2.0;N2[t0]=2.0;N3[t0]=2.0
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Figure(6) :  Variation of N1, N2 and N3 against time (t) for 

a1=0.16;a11=2.696; a12=0.84;a13=0.576;a2=0.576;  

a22=0.84;a23=1.152; a3=0.336;a33=0.184;a31=0.368;N1[t0]=2.0;N2[t0]=4.0;N3[t0]=1.0
 

 

 
Figure(7) :  Variation of N1, N2 and N3 against time (t) for 

 
a1=0.056;a11=6.952;a12=0.312;a13=0.288;a2=0.001;a22=5.336;a23=0.184;  

a3=0.104;a33=7.608;a31=0.128;N1[t0]=0.272;N2[t0]=0.656;N3[t0]=0.216 

 

 
Figure(8) :  Variation of N1, N2 and N3 against time (t) for 
a1=0.784;a11=1.488;a12=0.552;a13=1.2;a2=0.704;a22=1.232;a23=1.384;   

a3=0.576;a33=2.48;a31=1.384;N1[t0]=3.544;N2[t0]=5.72;N3[t0]=1.128 
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OBSERVATIONS OF THE GRAPHS 

 

Case 1: In this case initially the first species dominates over the second species till the time instant 

* 0.13t   after which the dominance is reversed. The natural growth rate of the second species is greater 

than the natural growth rates of both first and third species. It is evident that the third species dominates  at 

the initial time point, with a significantly higher population compared to first and second. Further,  the self 

inhibition coefficient of the first species is highest. This is shown in Figure 1. 

Case 2: In this situation the second species dominates over the first species up to the time instant * 2.65t   

after which the dominance is reversed. The initial values of the first, second and third species are in 

ascending order. The first species with low natural birth rate. Further,  it is evident that the birth rate of the 

second species and the interaction coefficient of  the third due to first species are identical. This is illustrated 

in Figure 2. 

Case 3: It is noticed that initially the third species is dominated by first up to time instant * 0.12t   and the 

second up to * 0.5t   after these dominate times we find reversal of the dominance. The birth rate of the 

second and the natural birth rate of both third species are almost equal. Further, it is evident that all the three 

species asymptotically converge to the equilibrium point. (Figure 3). 

Case 4: In this case initially the first and second species dominates over the third species till the same time 

instant * 0.71t   after which the dominance is reversed. The initial values of the first, second and third 

species are in descending order. Further,  the self inhibition coefficients of the first and third species are 

same as the natural birth rate of the third species. (Figure 4). 

Case 5: The initial values of all the first, second and third species are identical. The natural birth rates of the 

first and second species are almost same. It is noticed that the third species is dominated by the second 

which itself dominated by the first as shown in Figure 5. 

Case 6: Initially the first species dominates over the third species till the time instant * 0.43t   after which 

the dominance is reversed. The first species with low natural birth rate. Further, it is evident that the natural 

growth rate of the second species and the interaction coefficient of  the first due to third species are 

identical. 

Case 7: The second species has the least natural birth rate. The initial value of the second species is greater 

than other two. Further, it is evident that all the three species asymptotically converge to the equilibrium 

point. (Figure 7). 

Case 8: In this case initially the second species dominates over the first till the time instant * 0.25t   after 

which the dominance is reversed. Further, we notice that all the three species are a weak competitor with no 

appreciable growth from some time instant. (Figure 8). 

 

CONCLUSION 

 

The present paper deals with an investigation on the stability of athree species syn eco-system with limited 

resources. In this paper we established all possible equilibrium states. It is conclude that, in all eight 

equilibrium states, only the normal steady state is stable. Further the global stability is established with the 

help of suitable Liapunov’s function and the numerical solutions are computed using Runge-Kutta fourth 

order method. 
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