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Abstract 

The study uses machine learning and deep learning models to study the intricate 

relationship between viral genetic DNA sequences and host organisms. It uses 

a comprehensive dataset from databases like ExPASy and NCBI, which encodes 

crucial genetic information for viral replication. 

The study aimed to create a viral DNA dataset and develop robust machine 

learning and deep learning models to classify viruses into eight host categories. 

Despite extensive experimentation using various models, performance 

improvement was elusive due to genetic overlaps. Viral genomes from different 

classes had significant shared genetic sequences, making it difficult for these 

models to identify unique class-specific features, blurring the lines of 

differentiation. 

The study reduced the number of classes from eight to three, focusing on plants, 

animals, and microorganisms. This resulted in improved evaluation metrics, 

with the Random Forest Machine learning model reaching a maximum accuracy 

of 70% and the LSTM deep learning model surpassing 85%, overcoming earlier 

challenges. 

The discovery that viral genomes from different classes share significant genetic 

overlaps challenges conventional molecular distinctions, emphasizing the 

complexity of molecular differentiation in viral genomes. This pragmatic 

approach aligns molecular understanding with genetic data in viral host 

determination. 

 

Key Terms: Machine Learning; Deep Learning; Viral Host Specificity; DNA 

Sequences; Disease Surveillance. 

 

1. Introduction 

 

Understanding viral dynamics and host organism interactions is crucial in virology and molecular biology. 

Advancements in technology, including machine learning and deep learning, offer new opportunities to unravel 

these complexities. 

This work aims to develop a predictive model using advanced machine learning and deep learning models to 

determine virus host organisms based on genetic DNA sequences, using a comprehensive dataset from 

databases like ExPASy and NCBI.This research aims to generate a vast viral DNA dataset and develop 

machine learning and deep learning models to classify viruses into eight host categories, reflecting the diversity 

of viruses and their potential hosts, reflecting the molecular tapestry of life. 
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Machine learning models like Decision Trees, Random Forest, Naïve Bayes, KNN, and deep learning models 

like CNN and LSTM face a challenge due to genetic overlaps among different viral classes. These shared 

genetic sequences make it difficult for conventional models to identify unique class-specific features. 

The research reduced the number of classes from eight to three, focusing on plants, animals, and 

microorganisms, to better understand viral genetic information. This approach aligns molecular understanding 

with genetic data, resulting in improved metrics and clarity in viral genome classification. 

The discovery that viral genomes from different classes share significant genetic overlaps challenges 

traditional molecular distinctions and emphasizes the need for advanced computational approaches to navigate 

genetic data. This not only advances computational virology but also offers a nuanced perspective on viral host 

classification. 

Advanced computational methodologies and molecular insights will enhance our understanding of viruses and 

host organisms, refining predictive models and contributing to scientific discourse on viral-host interactions. 

 

1.1 The Significance of Virus Host Categorization 

The categorization of viruses based on their host organisms holds paramount significance in elucidating the 

intricate dynamics of viral infections and advancing our comprehension of host-virus interactions. Accurate 

classification allows for targeted research on specific host groups, aiding in the development of tailored 

therapeutic interventions and preventive measures. Moreover, it facilitates precise disease surveillance, 

enabling a proactive response to potential outbreaks. The proposed work's significance lies in its potential to 

refine the categorization process, shedding light on the shared genetic elements among different viral classes 

and providing a nuanced understanding of viral diversity, crucial for both scientific research and public health 

initiatives. 

 

1.2 Data Set & Domain 

Our objective is to prepare the data to develop classification models involving eight host classes, namely 

humans, plants, vertebrates, invertebrates, bacteria, eukaryotic microorganisms, archaea, and fungi. The 

corresponding DNA sequences of viruses belonging to these classes were collected from reputable databases 

such as ExPASy (operated by the SIB Swiss Institute of Bioinformatics,(https://www.expasy.org/) and NCBI 

(National Center for Biotechnology Information,(https://www.ncbi.nlm.nih.gov/). These databases serve as 

valuable repositories of viral genomic data, enabling us to compile a comprehensive and diverse dataset for 

training and evaluating our machine learning models. By leveraging these reliable sources, we aim to ensure 

the data's quality, integrity, and relevance, which are critical factors in achieving accurate and robust 

predictions of viral host specificity. 

 

The dataset consists of 280 rows and 2 columns 

 

 
Figure 1: Host Classes under consideration 

 

2. Literature Survey 

 

The referenced research articles collectively contribute to the field of predicting viral host specificity through 

machine learning and deep learning approaches. Several key themes emerge from the synthesis of these works. 

 

https://www.expasy.org/
https://www.ncbi.nlm.nih.gov/
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Reference Work Summary Methodology Used Limitations 

Zheng et al., 

2018 [1] 

Exploration of virus-host protein 

interactions through feature 

extraction and machine learning. 

Feature extraction, machine 

learning approaches. 

- Sensitivity to choice of features. - Impact of 

feature selection on model robustness. 

Cho and Won, 

2003 [2] 

Application of machine learning in 

DNA microarray analysis for cancer 

classification. 

Machine learning for DNA 

microarray analysis. 

- Reliance on curated datasets may introduce 

biases. - Sensitivity to the quality and 

representativeness of training data. 

Nguyen et al., 

2016 [3] 

DNA sequence classification using 

Convolutional Neural Network 

(CNN). 

CNN for DNA sequence 

classification. 

- Performance sensitive to dataset quality. - 

Potential bias in models due to training data 

limitations. 

Tampuu et al., 

2019 [4] 

ViraMiner: Deep learning on raw 

DNA sequences for identifying 

viral genomes in human samples. 

Deep learning, convolutional 

neural networks (CNNs) on 

raw DNA sequences. 

Lack of interpretability in deep learning 

models. - Potential overfitting to specific 

virus types. 

Santoso et al., 

2022[5] 

Systematic literature review on 

virus prediction based on DNA 

sequences using machine learning 

and deep learning. 

Literature review, synthesis of 

machine learning and deep 

learning methods. 

Relies on existing studies with varied 

methodologies. - Limited control over the 

quality and consistency of source studies. 

Muflikhah et 

al., 2022 [6] 

Profiling DNA sequence of SARS-

Cov-2 virus using machine learning 

algorithm. 

Machine learning algorithm for 

profiling SARS-CoV-2 DNA 

sequences. 

Potential challenges in adapting the model to 

emerging SARS-CoV-2 variants. - 

Generalization limitations to other viruses. 

Chaturvedi et 

al., 2023[7] 

PREHOST: Host prediction of 

coronaviridae family using machine 

learning. 

Machine learning for 

predicting hosts of 

coronaviridae family. 

Limited to coronaviridae family, may lack 

generalizability. - Dependence on available 

data for training. 

Kwon et al., 

2019[8] 

Study on host tropism determinants 

of influenza virus using machine 

learning. 

Machine learning for 

identifying host tropism 

determinants. 

Challenges in adapting models to evolving 

influenza strains. - Complex host-virus 

interactions not fully captured by models. 

Xu and 

Wojtczak, 

2022[9] 

Dive into machine learning 

algorithms for influenza virus host 

prediction with hemagglutinin 

sequences. 

Machine learning algorithms 

for influenza virus host 

prediction using hemagglutinin 

sequences. 

Model adaptability challenges to new 

influenza strains. - Sensitivity to sequence 

variations in hemagglutinin. 

Salama et al., 

2016[10] 

Prediction of virus mutation using 

neural networks and rough set 

techniques. 

Neural networks, rough set 

techniques for predicting virus 

mutation. 

Generalization limitations to diverse viruses. 

- Dependence on the availability and diversity 

of mutation data. 

Eng et al., 

2017 [11] 

Predicting zoonotic risk of 

influenza A viruses from host 

tropism protein signature using 

random forest. 

Random forest for predicting 

zoonotic risk of influenza A 

viruses. 

-Challenges in predicting zoonotic risk due to 

evolving viral strains. - Dependence on the 

quality of input protein signature data. 

Ghosh et al., 

2022 [12] 

Application of Machine Learning in 

Understanding Plant Virus 

Pathogenesis. 

Application of machine 

learning in plant virus 

pathogenesis. 

Limited availability of comprehensive plant 

virus datasets. - Challenges in generalizing 

models from human to plant viruses. 

Barman et al., 

2014 [13] 

Prediction of interactions between 

viral and host proteins using 

supervised machine learning 

methods. 

Supervised machine learning 

methods for predicting viral-

host interactions. 

Sensitivity to the quality and diversity of 

interaction data. - Potential biases in curated 

datasets. 

Qiang et al., 

2018 [14] 

Scoring amino acid mutations to 

predict avian-to-human 

transmission of avian influenza 

viruses. 

Scoring amino acid mutations 

for predicting avian-to-human 

transmission. 

Limited predictability of avian-to-human 

transmission based on amino acid mutations. 

- Sensitivity to the quality and completeness 

of mutation data. 

Agor and 

Özaltın, 2018 

[15] 

Models for predicting the evolution 

of influenza to inform vaccine strain 

selection. 

Models for predicting influenza 

evolution to inform vaccine 

strain selection. 

Challenges in predicting influenza evolution 

due to constantly evolving viral strains. - 

Dependence on the quality and diversity of 

input data. 

Phute et al., 

2021 [16] 

A Survey on Machine Learning in 

Lithography. 

Survey on machine learning 

applications in lithography. 

Relies on existing studies with varied 

methodologies. - Limited control over the 

quality and consistency of source studies. 

 

Despite the advancements presented in these studies, certain limitations are notable. One of the key limitations 

of above referenced works is that authors have not tried with all the categories of host viruses. Any host viruses 

on this earth can be classified into eight discrete host categories, namely humans, plants, vertebrates, 

invertebrates, bacteria, eukaryotic microorganisms, archaea, and fungi. Authors have tried limited classes of 

host viruses in their research. This is the key motivation behind this undertaken research work. 

https://doi.org/10.2174/1389200219666180829121038
https://doi.org/10.2174/1389200219666180829121038
https://www.researchgate.net/publication/221565159_Machine_Learning_in_DNA_Microarray_Analysis_for_Cancer_Classification
https://www.researchgate.net/publication/221565159_Machine_Learning_in_DNA_Microarray_Analysis_for_Cancer_Classification
https://doi.org/10.4236/jbise.2016.95021
https://doi.org/10.4236/jbise.2016.95021
https://doi.org/10.1371/journal.pone.0222271
https://doi.org/10.1371/journal.pone.0222271
https://doi.org/10.1109/CITSM56380.2022.9935921
https://doi.org/10.1109/CITSM56380.2022.9935921
https://doi.org/10.11591/eei.v11i2.3487
https://doi.org/10.11591/eei.v11i2.3487
https://doi.org/10.1016/j.heliyon.2023.e13646
https://doi.org/10.1016/j.heliyon.2023.e13646
https://doi.org/10.2174/1574893614666191104160927
https://doi.org/10.2174/1574893614666191104160927
https://doi.org/10.1016/j.biosystems.2022.104740
https://doi.org/10.1016/j.biosystems.2022.104740
https://doi.org/10.1016/j.biosystems.2022.104740
https://doi.org/10.1186/s13637-016-0042-0
https://doi.org/10.1186/s13637-016-0042-0
https://doi.org/10.3390/ijms18061135
https://doi.org/10.3390/ijms18061135
https://doi.org/10.1186/s12985-022-01767-5
https://doi.org/10.1186/s12985-022-01767-5
https://doi.org/10.1371/journal.pone.0112034
https://doi.org/10.1371/journal.pone.0112034
https://doi.org/10.3390/molecules23071584
https://doi.org/10.3390/molecules23071584
https://doi.org/10.1080/21645515.2017.1423152
https://doi.org/10.1080/21645515.2017.1423152
https://doi.org/10.1109/AIMV53313.2021.9670977
https://doi.org/10.1109/AIMV53313.2021.9670977
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3. Methodology 

 

Our journey commences with the preprocessing of DNA fasta sequences to extract pertinent features that 

encapsulate essential genetic attributes. Importantly, meticulous attention was devoted to ensuring balanced 

representation across these eight host classes. In addition to the initial eight-class classification, the project 

explores reduced classifications, with three classes. However, in this work we have focused only on 8 classes.  

 

 
Figure 2: Model Development Phases 

 

 
Figure 3: Data Curation Steps 

 

3.1 Data Preprocessing: 

3.1.1 Data Cleaning: The overall strategy applied for data cleaning is to remove characters from the DNA 

sequences that are either non-standard or do not convey specific nucleotide information. The newline character 

'\n' is removed to ensure that sequences are in a clean, continuous format. Ambiguous characters like 'Y', 'M', 

'R', 'N', 's', 'S', 'K', and 'W' are removed to standardize the representation of nucleotides (A, T, G, C). The result 

is that the 'DNA_sequences' column contains cleaned and standardized DNA sequences, making them suitable 

for further analysis or modeling. 

 

3.1.2 Encoding the hosts columns: The label encoding process is applied to the "hosts" column from the 

data, which presumably contains categorical host labels (e.g., "human," "vertebrates," etc.). After the label 

encoding is complete, the encoded labels are stored in the variable y.The y variable now contains numerical 

representations of the original categorical host labels. These numerical labels can be used as target variables 

in machine learning models. 

 

3.1.3 Converting Sequences into Kmers: As the length of biological sequences varies by species and has 

distinct patterns, we extract k-mers from the sequences to understand and group the biological data based on 

the extracted k-mers present across all the sequences in the data set. This process of the creation and grouping 

of k-mers forms a relationship between the sequences and helps in the categorisation of the species. K-mers 

are widely used in tasks like sequence analysis, genome assembly, and feature extraction because they capture 

local patterns within DNA sequences.  

 

3.1.4     Generate a Document term Matrix: From the processed samples of the k-mer strings, a document 

term matrix is created. A document term matrix is a representation of text data in the numeric form. In order 

to create a document term matrix, CountVectorizer is used from the python sklearn library. We fit the processed 

data into the CountVectorizer. It creates a matrix based on the count of distinct k-mers for the entire fitted data.  

 



   Journal Of Advance Zoology 

 

Available online at: https://jazindia.com    780 

3.1.5    Labelling the target variable: The target consists of 8 different classes namely archaea, bacteria, 

eukaryotic microorganisms, humans, invertebrates, plants, vertebrates and fungi. These classes are labelled 

using a Label encoder from the sklearn library.This data of the document term matrix of DNA sequences along 

with the target variable of class labels      are used to further build the models. To address data imbalance, 

Stratified K-Fold cross-validation was employed, yielding varying model performance.  

 

3.1.6  Splitting the data into train and test split: The data was split into train and test split with a test size 

of 0.3 

 

3.1.7 Data Transformation: Using a Count Vectorizer for data transformation, which involves classifying 

DNA sequences into different host categories, was found to be a suitable choice. 

 

4. Model Building 

For classification of viral hosts based on DNA sequences, the choice of the model depends on factors like the 

size of dataset, the complexity of the problem, and the computational resources available. 

 

4.1 Machine Learning Models: For this work, we have used following ML models. 

▪ Random Forest: Random Forest is an ensemble learning method that is robust, handles high-dimensional 

data well, and is resistant to overfitting. It's a good choice for both small and large datasets. 

▪ K-Nearest Neighbors (K-NN): K-NN is a simple yet effective classification algorithm. It's particularly useful 

when much about the data distribution is unknown and can work with small to moderately sized datasets. 

▪ Gradient Boosting Models (e.g., XGBoost): These are ensemble methods that often perform very well in 

classification tasks. They are known for their speed and accuracy and can handle both small and large datasets. 

▪ Multinomial Naive Bayes: Naive Bayes classifiers are simple and work well with high-dimensional data. 

They are particularly useful when dealing with text-based or sequence data. 

▪ Decision Trees: Decision trees are interpretable and can be useful for understanding feature importance. They 

can be used as standalone models or within ensemble methods like Random Forest. 

 

4.2 Deep Learning Models: 

4.2.1 CNN: CNNs are well-suited for tasks involving image and sequence data, making them a natural choice 

for analysing DNA sequences. They can capture local patterns and motifs within the DNA sequences, which 

can be informative for predicting viral host specificity. CNNs have shown impressive performance in various 

bioinformatics tasks, including DNA sequence classification, and can automatically learn hierarchical features 

from the data. For data transformation, word embedding was used. Word embeddings are typically considered 

a better method than count vectorization for deep learning models when working with text data. 

 

Model building: 

➢ Model Architecture: 

o Input Layer: The model takes input sequences of length 200. 

 

o Hidden Layer 1: A dense layer with 100 units and ReLU activation function, which introduces non-linearity 

into the model. 

 

o Hidden Layer 2: Another dense layer with 50 units and ReLU activation function. 

 

o Output Layer: The final layer with 8 units (equal to the number of classes) and a softmax activation function, 

which provides probability distribution over the classes. 

 

➢ Loss Function: The model uses the "sparse_categorical_crossentropy" loss function, which is commonly 

used for multi-class classification tasks where the target values are integers (class labels). 

 

➢ Optimizer: The "adam" optimizer is used for gradient-based optimization during training. Adam is an 

efficient and commonly used optimizer for deep learning. 

 

➢ Metrics: The model is evaluated using two metrics during training: 
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o "accuracy": This metric calculates the accuracy of the model's predictions on the training and validation 

datasets. 

 

o "sparse_categorical_accuracy": This is a specific accuracy metric for the parse_categorical_crossentropy" 

loss, ensuring that it handles integer target values correctly. 

 

➢ Training Configuration: 

o Number of Epochs: The model is trained for 35 epochs, indicating the number of times the entire training 

dataset is processed. 

 

o Batch Size: The training data is divided into batches of 32 samples for each update of the model's weights. 

 

o Verbose: It specifies whether to display training progress during each epoch (1 for display, 0 for no display). 

 

o Validation Data: The validation data (X_test and y_test) is used to evaluate the model's performance after 

each epoch. 

 

4.2.2 LSTM: LSTM (Long Short-Term Memory) is specifically designed for sequential data, which is a 

natural fit for DNA sequences. The ability of LSTM to process sequences of variable lengths and capture long-

range dependencies between DNA bases can be crucial for predicting viral host specificity. LSTM models can 

be initialised with pre-trained embeddings, which can capture useful information about DNA bases from large-

scale genomic datasets. Transfer learning from related tasks can be leveraged to improve model performance, 

even with limited viral genomic data. 

 

Model building: 

This model architecture leverages word embeddings to convert text data into numerical form, processes it 

through two LSTM layers to capture sequential patterns, and then uses a dense layer for classification. It's a 

common choice for text classification tasks and can be further tuned and optimized based on the specific dataset 

and problem requirements. 

 

➢ Embedding Layer: The model starts with an Embedding layer. This layer is responsible for converting 

input text data (sequences of words) into dense numerical vectors. The input_dim parameter is set to the size 

of the vocabulary, which is determined by the number of unique words in your dataset plus one (to account for 

out-of-vocabulary words). The output_dim parameter specifies the dimensionality of the dense embedding 

vectors, in this case, 32. The input_length parameter defines the length of input sequences, which is set to 

max_sequence_length. 

 

➢ LSTM Layers: Two LSTM (Long Short-Term Memory) layers are stacked on top of the embedding layer. 

LSTM is a type of recurrent neural network (RNN) that is well-suited for sequence data like text. The first 

LSTM layer has 128 units and is set to return sequences (return_sequences=True). This means it produces 

sequences of outputs for each time step in the input sequence. The second LSTM layer has 64 units and operates 

in the default mode, which returns only the final output for each sequence. 

 

➢ Dense Layer: A Dense layer with 8 units and a softmax activation function is added as the output layer. 

This layer is responsible for classifying input text into one of eight possible classes (hosts). 

➢ Compilation: The model is compiled with the categorical cross-entropy loss function, which is commonly 

used for multi-class classification tasks. The optimizer used is Adam, a popular choice for gradient-based 

optimization. The model also tracks the accuracy metric during training. 

 

➢ Training: The model is trained using the training data (X_train and y_train) for 35 epochs with a batch 

size of 64. During training, the model learns to map input sequences to their corresponding host labels. The 

validation data (validation_split=0.2) is used to monitor the model's performance on unseen data and prevent 

overfitting. 
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5. Experimental Results 

 

Our dataset has 35 sequences for each considered class of virus 

 

 
Figure 4: 8 classes of considered Host Viruses 

 

5.1 Performance of Machine Learning Models 

  

 
Figure 5: Performance metrics of applied Algorithms 

 

The 8-class classification models exhibited varying degrees of performance, with accuracies ranging from 

approximately 11.90% to 42.86%. Multinomial Naive Bayes, Random Forest, Gradient Boosting, and 

XGBoost showed better accuracy and precision compared to other models, while AdaBoost performed poorly. 

Among all the models, KNearestNeighbors and RandomForest algorithms have done a better job at the 

classification. 

 

Evaluation metrics of models after using stratified k fold for optimization: 

 

 
Figure 6: Performance metrics of applied Algorithms using stratified k fold for optimization  
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After applying the Stratified K-Folds technique to split the data for the 8-class classification models, we 

observed some interesting trends. While the overall performance of the models remained consistent in terms 

of accuracy and F1 score, there were variations in their capabilities.Among the models, the Random Forest 

and K-Nearest Neighbors (KNN) classifiers displayed accuracy levels around 40%, while their F1 scores 

indicated a relatively lower capacity for precision and recall. Multinomial Naive Bayes exhibited a balanced 

but slightly lower accuracy and F1 score. On the other hand, AdaBoost performed the least effectively with 

the lowest accuracy and F1 score among all models. In contrast, Gradient Boosting showed promise with a 

higher precision and F1 score, suggesting its potential for certain classes within the dataset. Overall, these 

models have shown varying degrees of performance when considering both accuracy and F1 score.  

 

Statistical test to validate whether there is significant difference in the model performances after using 

stratified k folds to split the train and test data: 

The paired t-tests were conducted to compare the performance metrics (accuracy and F1-score) between 

models trained using the Stratified K-Folds technique and models trained with the normal data split. Here are 

the key findings: 

 

Accuracy Comparison: The t-statistic for accuracy is approximately -0.036, with a corresponding p-value of 

approximately 0.973. The p-value is well above the significance level of 0.05. This indicates that there is no 

statistically significant difference in accuracy between the two methods of data splitting. In other words, the 

choice of data splitting technique did not significantly impact model accuracy. 

 

F1-Score Comparison: The t-statistic for F1-score is approximately -0.583, and the p-value is approximately 

0.581. Similar to accuracy, the p-value for F1-score is also well above the significance level of 0.05. This 

suggests that there is no statistically significant difference in F1-score between models trained with Stratified 

K-Folds and those trained with the normal data split. Thus, the choice of data splitting technique did not 

significantly affect the F1-score. 

The statistical analysis indicates that there is no significant difference in model performance (accuracy and F1-

score) when using the Stratified K-Folds technique for data splitting compared to the normal data split. 

Therefore, either method can be chosen based on other considerations such as data distribution and modelling 

objectives. 

 

5.2 Performance of Deep Learning Models: 

 

5.2.1 CNN: 

 
Figure 7: Performance of CNN model 

 

Training Performance: The neural network model was trained over 35 epochs. During this time, the training 

accuracy steadily increased from approximately 15.87% to about 83.33%. This indicates that the model learned 

effectively from the training data and improved its ability to classify the training samples. 

 

Validation Performance: The validation accuracy also improved throughout training, reaching approximately 

51.85% by the end. This suggests that the model was learning to generalize well to the validation data. 
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Test Performance: When evaluated on the test dataset, the model achieved an accuracy of about 51.85%. This 

result is consistent with the validation accuracy and indicates that the model was able to generalize reasonably 

well to unseen data. 

 

Loss: The loss, which measures the error during training, steadily decreased throughout the training process. 

This indicates that the model was fitting the training data well and improving its ability to make accurate 

predictions. 

In summary, the neural network model showed good training, validation, and test performance, with the ability 

to generalize to unseen data. The accuracy on the test dataset reached approximately 51.85%, indicating that 

the model performed reasonably well in classifying samples into the 8 defined classes. 

 

5.2.2 LSTM: 

 
Figure 7: Performance of LSTM model 

 

Training Performance: The training accuracy improved steadily over the epochs, reaching approximately 

98.01% accuracy by the final epoch. This indicates that the model effectively learned from the training data. 

 

Validation Performance: The validation accuracy, however, remained relatively low, around 0.00% 

throughout the training process. This suggests a potential issue with overfitting, where the model performs 

well on the training data but fails to generalize to new, unseen data. 

 

Test Performance: When evaluated on the test dataset, the model achieved an accuracy of approximately 

29.63%. This result is consistent with the low validation accuracy and indicates that the model struggled to 

generalize to the test data. 

 

Loss: The loss, which measures the error during training, steadily decreased throughout the training process, 

indicating that the model was fitting the training data well. However, the high loss value on the test data 

suggests that the model may have overfit the training data. 

In summary, the CNN model achieved the best training accuracy. 

 

6. From 8 Classes to 3 Classes- ‘Plants, Animals, and Microorganisms’ 

 

The intricate genetic overlaps among viral genomes from distinct classes presented a formidable challenge to 

machine learning and deep learning models, hindering the identification of unique class-specific features. To 

address this, condensing the classes to three—plants, animals, and microorganisms—was strategically chosen 

to mitigate the impact of ambiguous distinctions and enhance the models' ability to discern host-specific 

features. This simplification aligns with a pragmatic approach to molecular understanding, acknowledging the 

observed complexities in genetic data while optimizing performance metrics. The resultant improvement in 

model accuracy and interpretability in the three-class problem validates the decision, offering a more practical 

and robust solution for real-world applications such as disease surveillance and outbreak monitoring. 
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6.1 Evaluation of machine learning models for 3 Classes 

 

 
Figure 10: Performance metrics of applied Algorithms for 3 Classes 

 

We can observe from the barplot that most of the ensemble methods are able to classify the hosts effectively. 

All the ensemble methods show 70% accuracy on average. we can observe that random forest, gradient 

boosting and xgbclassifier have given the highest accuracy, precision, recall and f1 score. 

 

 
Figure 11: Performance of CNN Model for 3-Classes 

 

 

Table 1: Evaluating the training and test accuracy of models. 

 
 

In general, the models demonstrated reasonable performance in classifying DNA sequences into three 

categories (plants, animals, microorganisms) before hyperparameter tuning. RandomForest, GradientBoosting, 

and XGBClassifier initially exhibited the highest accuracy among the models. However, after hyperparameter 

tuning, the performance of these models further improved. 

The hyperparameter tuning process effectively optimized the model parameters, enhancing the classification 

performance. Among the models, XGBClassifier emerged as the top-performing classifier with the highest 

accuracy, precision, recall, and F1 score of 0.76,0.76,0.75,0.77 respectively after tuning. This suggests that 
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XGBoost is a suitable choice for classifying DNA sequences into the specified categories. However, it's 

essential to note that model selection should consider both performance and computational efficiency, as 

XGBoost can be computationally intensive. 

 

6.2 Evaluation of Deep learning models for 3 Classes: 

CNN: The model learned to classify DNA sequences into host categories effectively. It started with relatively 

low accuracy but progressively improved as more epochs were completed. The training accuracy reached 

approximately 89.82%, which means that, on the training data, the model correctly predicted the host category 

for about 89.82% of the sequences. The validation accuracy reached approximately 75.44%. This indicates 

that the model generalized well to unseen data, as the validation accuracy is close to the training accuracy. 

 

 
Figure 12: Performance of LSTM Model for 3-Classes 

 

The LSTM model demonstrated strong learning capabilities during training, achieving nearly perfect accuracy 

on the training data. However, the model's performance on the validation and test datasets suggests that it 

might be overfitting to some extent. It may have learned noise or specific details of the training data that do 

not generalize well. The observed overfitting in both the LSTM and CNN models can be attributed to the 

presence of duplicate data in our genomes, particularly for viruses that infect multiple hosts. These duplicates 

introduce bias into the training process, as the model may inadvertently memorize repeated examples rather 

than learning meaningful patterns. As a result, the models perform exceptionally well on the training data but 

struggle to generalize to unseen data, leading to reduced performance on the validation and test sets.  

 

7. Conclusion: 

 

In the context of our research project, which encompassed the classification of viral genomes into eight distinct 

classes, including humans, vertebrates, invertebrates, plants, fungi, protists, bacteria, and archaea, the 

application of various machine learning and deep learning models yielded notably suboptimal performance 

results. This outcome, despite our exhaustive efforts in parameter optimization, brings to light the potential 

challenges embedded within the dataset classes. One of the central issues we have encountered is the likelihood 

of Genetic Overlaps. Viruses, particularly those hosted by closely related organisms or within similar 

environments, may exhibit genetic overlaps or similarities that are challenging to distinguish solely based on 

DNA sequences. When viral genomes from different classes share considerable genetic sequences or motifs, 

it becomes arduous for machine learning models to identify unique, class-specific features that can reliably 

distinguish between these viruses. The presence of common genetic elements across classes blurs the lines of 

differentiation. Genetic overlap gives rise to ambiguity in classifying viral genomes. Models may encounter 

difficulties in accurately assigning a viral genome to the correct host class due to the presence of shared genetic 

segments. This ambiguity contributes to misclassifications and reduced model performance. Genetic similarity 

often results in a higher rate of misclassifications, where viruses from one class may be erroneously classified 

into a different class. These misclassifications are particularly problematic when addressing complex, closely 

related classes such as vertebrates and invertebrates. 
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8. Future Directions 

 

The study's findings shed light on the discovery that viral genomes from different classes exhibit significant 

genetic overlaps, challenging conventional molecular distinctions. Moving forward, potential research 

directions in viral host determination involve refining classification models through optimization techniques 

and incorporating multi-omics data for a comprehensive understanding of viral-host interactions. Exploring 

transfer learning methods, advanced deep learning architectures, and enhancing model interpretability could 

provide insights into the intricate relationships within viral genetic sequences and host determinants. 

Integrating epidemiological data and conducting rigorous validation studies are crucial for assessing model 

generalizability and reliability. Additionally, investigating clinical and therapeutic implications of viral-host 

interactions may inform the development of targeted interventions and improve public health outcomes. 

Collaboration across interdisciplinary teams will be pivotal in advancing research in this field. 
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