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Abstract

This study investigates the dynamic interactions among four species
within an ecological framework. The population model describes the
cooperative dynamics between two preys and two predators as these
species cooperate to fulfill various needs, including food requirements
and shelter. Simultaneously, interspecific predation may emerge as
distinct species compete for survival within the same habitat. The
mathematical model comprises a set of nonlinear differential equations
for each prey and predator. A comprehensive exploration of feasible
equilibrium positions is undertaken to assess species stability at various
stages, considering factors such as positivity and boundedness.
Furthermore, the model employs the Routh-Hurwitz Criterion and
Lyapunov function to investigate both local and global coexistence
states of the species.
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1. Introduction

In the field of ecology, studying changing populations of species is crucial for understanding the intricate
dynamics of life within ecosystems. In this context, species, serving as the foundational elements of
ecological systems, exhibit unique characteristics while carving out specialized niches within their
environments. The dynamic nature of species populations encompasses the patterns and processes governing
their growth, distribution, interactions, and responses to environmental changes. The famous ecologist study
of evolving species populations is central to ecology, providing insights into the complex interactions that
drive ecosystems (21012 Ecological models serve as essential tools for scientists and researchers to
understand and predict the dynamics of ecosystems, species interactions, and the effects of various factors on
the natural world 571,

Ashok Mondal et.al., investigated the study about fear effect and harvesting effort between the prey predator
species 1. M.Gunasekaran, et.al., construct and analyzed the optimal harvesting dynamic model, holling
functional response with host ecosystem and eco-epidemiological prey predator model 51718l Ecologists

Available online at: https://jazindia.com 442


mailto:*sarravanaprabum@gmail.com
mailto:*sarravanaprabum@gmail.com

Journal Of Advance Zoology

analyze the complex dynamics of population fluctuations in various species over time, influenced by factors
such as foraging, refuge, square root function, resource availability, fear effect, functional response and
environmental conditions [3.8 9,16 201 The complex web of interactions within ecological systems has
long fascinated researchers, leading to the development of various models and frameworks aimed at
understanding the dynamics of species, coexistence patterns, ecological consequences of interactions and
adaptive protection mutualism 24 25.28. 31,

One such model that has garnered considerable attention within the field of ecology is the four species model.
This model represents a structured and detailed approach to investigating the dynamics of ecosystems by
focusing on the interactions and relationships among four individual or group of the same species. The four
species ecological model is built on the principles of population dynamics, species contacts, fractional
population, adaptive protection and resource competition 329, |t involves the study of dissimilar species
interact with each other within an ecosystem, considering factors such as cooperation, predation, competition
for resources, host-commensal and mutualistic relationships 2% 22 26. %0 Researches investigate and analysis
the species communication in ratio-dependent, bifurcation analysis, chaos control, fractional population
competition and ecological consequences of these three and four species model 23 27: 291,

Jinxing Zhao and Yuanfu Shao, examine the stochastic analysis between the prey predator species with
distributed delay . Many ecological researchers have conducted field studies to validate four species
ecological models and to understand how they apply to real-world ecosystems. These studies often focus on
specific ecosystems, such as coral reefs, forests, or aquatic systems. With the growing concern about climate
change and its impact on ecosystems, researchers have used four species ecological models to assess how
shifts in temperature, habitat loss, and other environmental changes affect the dynamics of species
interactions. Furthermore, this investigation will assess the model's applications in understanding and
predicting the responses of ecological communities to environmental perturbations, and offer practical
implications for ecosystem management, conservation, and preservation -1, It can help inform strategies
for preserving biodiversity, managing invasive species, and restoring damaged ecosystems. As ecosystems
around the world face unprecedented challenges, from climate change to habitat loss and invasive species, it
becomes increasingly critical to delve into the complexities of species interactions.

2. Mathematical Model
The proposed ecological model describes four species, namely first prey (Ni), second prey (N2), primary
predator (N3) and secondary predator (N4). The prey species N, and N,as well as the predator species N5 and
N,are mutually assist each other within their respective groups. At the same time, natural interaction occurs
between predator and prey species(N;, N,andN,,N,) for their food, shelter and other resources in the
environment. The system examines the continued existence of prey while battling with other two species, and
also the stable coexistence interaction between predator and Prey in their habitat. Sixteen equilibrium points
are acknowledged and derived. Finally, the local and global stability of all the four species in existence state
is depicted.
This model can be used to assess the stability of ecosystems, predict species abundances, and understand the
consequences of environmental changes of these four species. This field of study goes beyond mere
population size and explores the dynamics of species interactions, including cooperation, competition,
predation, and mutualism. In essence, the exploration of species in the context of dynamic populations in
ecology unveils the fascinating web of life's interconnections, shedding light on the ever-changing tapestry of
ecosystems and the intricate processes that sustain them.
The model characterized by nonlinear differential equation for the given system as follows

dN,

ET a;N; —byN + by Ny N, —by3Ny N3 — byyNiN, ey
dNy 2
ac azNy — bz N5 + by N3Ny — bysNy N3 — by NNy - (2)
dN3
dN,

The initial conditions for the populations are given asN,(0) > 0,N,(0) > 0,N5(0) > 0,N,(0) > 0,
indicating that the initial populations of all four species are greater than zero. These equations characterize
the changes in population sizes over time, incorporating factors such as growth rates and both intraspecific
competition and interspecific interactions among the species.
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3. The Symbolic Representation of the System of Equations

N;'s-Population density of i species. (where i = 1,2,3,4).

a;'s — Natural growth rates of Nis , (where i = 1,2,3,4).

b;;'s — Decrease rate of the species Ns due to intraspecific competition. (where i = 1,2,3,4).
by, &b,; —Increase rate of N; &N, due to mutualism with each other.

b;3 &b,3 —Decrease rate of N; &N, due to the inhibitory effect of N.

b4 &b, —Decrease rate of N; &N, due to inhibitory effect ofN,.

b3, &b,, —INncrease rate of N3&N, due to predation with N;.

b3, &b,, —Increase rate of N;&N, due to predation with N..

bz, &b,z —Increase rate of N3 &N, due to mutualism with each other.

4. Equilibrium State
Equilibria and stability of model
In this section, we discuss the equilibrium points of the system with their existence conditions and analyze
the stability of system near the equilibrium points. Now the sixteen equilibrium points of proposed system
are as follows.
l. Er + Trivial Equilibrium Point
E;(0,0,00): N;,=0N,=0, N3=0, N,=0
. E4 : The position in which one of the species exists and the other three are extinct.

— — 31 — — —
Es1(N1,0,0,0): Ny = - N,=0, N3;=0, N,=0
. . 11 . a, . .
E;»(0,N,,0,0): N; =0, N, = o N;=0, N,=0
L 2
E;3(0,0,N3,0): N;=0,N, =0, N3= 0o Na=0
B B B _ Va3 _ a,
EA4(0,0,0, N4_): Nl = 0, N2 = 0, N3 = 0, N4_ = b_
44
I Es:The position in which the two species are surviving and the remaining two are
extinct.
— — — aibzz +azby; — azbyy +aibyy — —
E¢;(N{,N,,00): Ny= , N, = , N; =0, N,=0
Sl( ! 2 ) ! b11b22 - b12b21 2 b11bZZ - b12bZl * *
This state is exist only when b;;b,, —b;,b,; >0
— — — — azbzsz —azbyz — agby, +azbs; —
E¢;(0O,N,,N3,0): N, =0, N, = , Ny = , N,=0
52(0. N2, N5, 0): Ny 2" byabsz + bysbs, b ° b€2b33 + ba3bs; b * b
- —\ = — — agbgy +a4D34 — a4b33 + agbys
E¢3(0,0,N3,N.): Ny =0, N, =0, N, = , N, =
53( 3 4) ! 2 ® b33b44 - b34b43 * b33b44 - b34b4—3

This state is exist only when bz3bs, — bgsbss > 0
— — — a1b44 - a4b14 — — — a4b11 + a1b41
E¢<,(N;,0,0,N,): N, = ,N, =0, N, =0, N, =
54( ! 4) N I 3 * 7 byybay + bigbyy
a;bsz —azbys

— — asb;; +a;b —
’ N, =0, N, = 3011 1031 N, =0
by1bs3 + bysbsy
azbyy —aybyy

~ bygbss + b13b311; b
— — a a
_ . N,=0, N,=_4zzt:be
7 baybyy +basby, b22bsg +brsbyy
V. Es;(Ny, N5, N3,0): The secondary predator free equilibrium point
N, = (byabsz + basbsy) +a,(b1absz — byzbsy) —asz(biabas + byobys)

e by1(bz2bss + bygbzy)+ bya(basbsy — byibss) + byz(byibsy + baibyy)’
aj(bz1bsz —bsibys) +a,(byybsz + byzbsy) —az(byibyz + bysbyy)

ESS(N]J O,Ng, 0) Nl =

ESG(O,Nz,O,N4): Nl == 0, NZ

N, = :
27 by1(bz2bss + by3bza)+ bia(basbay — baibaz) + bys(byibsy + bsibyy)

M. = a;(bz1bzy +baobsy) + ay(by1bsy + biobsy) +as(bybyy +bigbyy)  — ~0
® 7 by1(bazbsz +basbsy)+ biz(ba3bss — by1bsz) + bi3(ba1bzs +bsibay)’ !

\Y; Esg(0,N, N3, N,): The first prey free equilibrium point

N =0 N = az(bzzbss — basbys) — az(bysbyy + byabaz) —as(bysbas + baybss)
1=0, 2

B b, (b33zbss — basbys)+ bzs((b32b44 + b34b42)) + bys(bssbyz + bszbay)’
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M. = az(b3zbss — basbay) + az(byobyy + bagbyy) —as(baabs; — baobsy)
3 = )
by, (b3sbas — bssbyz)+ b23((b32b44 + b34b42)) + byy(bszbyz + bszbyss)
— ay(bszbyz + bazby;) —az(bysby, —byybyz) +a4(byzbss + basbsy)
W=
by, (bssbas — b34b43)i‘ b23(_(b32b44 + b34b42)) + byy(bszbyz + bszbyss)
VI. Es9(N;,0,N3,N,4): The second prey free equilibrium point

—  a3(b3zbyy —bzgbys) —az(bisbyy + b14byz) —ay(byzbzs +biybss) . =0
2 — Y

v b;1(b33bss —bzsbyz)+ b13((b31b44 + b34b41)) + by4(bsibys + basbyy)’
—  ag(bzibgy —baabyy) +a3(biibyy + biybyy) —as(bgibiy —biibsy)
3= ,
b;1(b33bss —bzsbyz)+ b13((b31b44 + b34b41)) + by4(bz1bsz + bzzbyy)
— a1(b31bsz + bszbyq) —az(byzbsy — bygbss) +a4(by1bss + bysbsg)
4

"~ byq(bssbys — b34b43)+_b13_((b31_b44 +bgsbsq)) + bia(bzibaz + bszbay)
VII. Es19(N1, N, 0,N,): The primary predator free equilibrium point
— ag(byzbag + basbyy) +a5(biobay — bigbss) —as(byzbas + bisbyy)
L=
b11(b22bas + b24b4z)+ b12((b2abas = b21bss)) + bia(b21bay +byzbas)
—  ag(byibgs —basbyq) +a3(by1bay +bigbsy) —as(byibas + bisbyy) . =0
2~ V3 —
b11(b22bas + b24b42)+ b12((b2abas = b21bss)) + bia(b21bay + byzbas)
N = a;(bz1baz + baobyy) +a5(byybay +bigbyg) +a4(byibyy — bygbyy)

W=
by1(bzybag +bosbyy)+ b12((b24b41 - b21b44)) + bya(bz1bsy +byybyy)

VII. Ep;(Ny, Ny, N3, N,): Coexistence state for all the four species
a1[(bazbssbas — byybzsbss) + (basbszbas + baszbssbys) + (basbsabys + basbssbas)]
+a;[(b12b33bss — b12b3abas) — (bysbsabas + bssbssbyz) + (biabssbay — biabszbys)]
+az[—(by2b23bss + bybssbss) — (bi3bazbas + bisbasbsy) + (b1abasbay — bisbasbas)]
V. — tay[—(bizba3bss + bibasbss) + (bigbasbsy — bigbyabsz) — (b1abaabss + bigbasbss)]
! b11b22b33b4s — b11D23b34 byz + by1ba3 b3g bay + b1 b3 b3abay + byq boy b3obys
+b11 b4 bazbzz — b1y byg b3gbas + byg byg b3abaz + byg byz b31bas + bizboz baghyy
+b12b24 b31bs3 + b13b24 b3zbay + b3 byg b3obas + by3 b3y baybyy + byz by byibyy
+Db13 byy b3absy + D13 byy b31byy — biz byy baibzy + big byg bsy byz + by by b3z by,
+ D14 byy b3y baz + b14 byyb3z by — big byg b3y byy + by byz b3y byy
a1[(bz1b33bas — baibzabsz) — (basbzibas + bysbssbyq) — (basbsibss + basbssbyq)]
+a;[(b11b33bss — b11b34bss) + (by3bz1bas + byszbzsbyq) + (biabsibaz + bisbazbyy)]
+az[—(by1b23bss + by1basbsz) + (bisbasbas — bigbaibas) + (b1abaibag + bigbasbay)]
~ tay[—(by1by3bss + by1bysbss) — (bisbaibss + bisbysbsy) + (b14bsibas — bigbyibss)]
b11ba2b33b4s — b11boob3s byz + bi1byz bay byy + biq baz b3gbyy + big bog bazhys
+D11 bas bazbzz — b1z byg b3zbys + b1z byy b3sbys + byp bz b31bay + byobas byabay
+b12b24 b31b43 + by3bos b33bay + big byy b3ybag + biz bay bazbyy + biz byy b3ibyy
+b13 b33 b3absy + b13 bpa b31bay — by3 byg baybzy + byg byy b3y bys + b1y byy b3z by,
+ b14 by b3y bas + b1g byybzz byy — bygbag by bay + b1y byz by byy
a1[(ba1bszbas + ba1bzsbsy) + (baabsibas + byybssbyq) + (basbsibsy — bspbasbyq)]
+ay[(b11b32b4s + b11b3sbys) + (byzbzibas + byabzsbsg) + (biabszbay — bigbsiby,)]
+az[(b11b22b4s + b11b2sbys) + (byzbaabsg — bizbaibas) + (biabaibay +bigbarbay)]
N. = —a4[(b11b2zb34 + b11b3sbss) + (byabaibss + bigbasbsi) + (biabaibsy + bigbaybsy)]
3 b11ba3b33bss — b11baob3s bys + bi1byz bay byy + big baz b3ghyy + big boy bazbys
+D11 bas bazbzz — b1y byy b3zbas + b1z byy bysbys + bip bz b3ibyy + byabos byabay
+b12b24 b31b43 + b13bos b33bay + big boy b3pbag + biz bsy baybyy + biz byy b3ibay
+b13 b3 b3abay + b13 bya b31bay — by3 bys baibzy + byg byy by bys + b1y byy b3z by,
+ b1a by b3y bag + b1a byybzz bay — byg bog b3y bay + by byz by byy
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ay[(bz1b3zbss + by1bssbys) + (baobsibas + byabssbar) 4+ (basbszbay — basbsibyy)]
+a;3[(b11b32bss + by1bszbss) + (byzbzibsz — byabssbsy) + (bisbsibay — bigbazbay)]
—az[(b11bz3bsz — b11b2sbas) + (bizbaibsz + byabazbyq) + (byzbiibay — bisbizbaq)]
N, = +2a4[(b11b25b33 + b11by3bzy) + (b13ba3b31 — biabyibgs) + (bazbaibsy + bisbyabsg)]
b11b33b33b4s — b11baob3s byz + by1by3 b3y bay + big baz b3gbyy + big bay b3zbys

+b11 b24 bazbzz — b1z byy b3sbas + by byg b3abaz + by byz bs1bas + byabos b3shyy

+b12b24 b31b4a3 + b13b34 b3zbag + by3 byy b3obas + by3 b3y byybyy + byz bog byibyy

+b13 b33 b3abay + b13 b4 b31bay — by3 byg byibsy + big byy b3y byz + b1y byg b3z by

+ b14 b33 b31 byz + D14 baobzz byy — b1y byz b3y Doy + byg byz by byy

5. Positivity and Boundedness of the system

Positivity of the solutions N, (t), N, (t), N3 (t), andN,(t)

Proposition: 5.1

Each solution of the system (1)-(4), accompanied by positive initial conditions, exists within the
interval[0, o), and all components, namely N, (t), N,(t), N5(t),and N,(t), remain non-negative for all
t=0.

Proof:

For te[0,T], considering the continuity of the system (1)-(4), the solution
N, (t), N, (1), N5(t) and N, (t)with specified initial conditions exists uniquely on the interval [0, T]
where0 < T < +oo.

Establishing the non-negativity of N, (t): the analytical solution for the density of the first population in the
system (1) is expressed as:

T
N;(t) = N.(0) [Epr a; —by1N;(s) + byNy(s) — byzN3(s) — byaNy (S)] ds
0

Given the inherent non-negativity of the exponential function and the assumed positivity of the initial
populationN, (0), it can be concluded that N; (t) > 0 forallt = 0.

Establishing the non-negativity of N, (t): the analytical solution for the density of the second population in
the system (2) is expressed as:

T
N,(t) = N,(0) [expf a; —byyNy(s) + by Ni(s) — byzN3(s) — byyNy (5)] ds
0

Given the inherent non-negativity of the exponential function and the assumed positivity of the initial
populationN, (0), it can be concluded that N, (t) > 0 forallt > 0.

Establishing the non-negativity of N5(t): the analytical solution for the density of the third population in the
system (3) is expressed as:

T
N3(t) = N3(0) [Epr ag — b33N3(s) + b3 N1 (s) + bgNy(s) + bguNy (S)] ds
0

Given the inherent non-negativity of the exponential function and the assumed positivity of the initial
population N5 (0), it can be concluded that N;(t) > 0 forall t > 0.

Establishing the non-negativity of N, (t): the analytical solution for the density of the fourth population in the
system (4) is expressed as:

T
N, (1) = Ny(0) [expj ag — byaNy (5) + by Ni(s) + byyNa(s) + b43N3(5)] ds
0

Given the inherent non-negativity of the exponential function and the assumed positivity of the initial
population N, (0), it can be concluded that N,(t) > 0 forall t > 0.
Therefore, under the specified positive initial conditions, all solutions of the system (1)-(4) are positive for
t=>0.
Boundedness of the solutions N4 (t), N, (t), N3(t),andN4(t)
Proposition: 5.2
Every solutions originating in the non-negative quadrantR% for the system (1)-(4) is characterized by being
uniformly bounded.
Proof:
Let's establish the function u as the sum of N; (t), N, (t), N5(t), N,(t) denoted as
u = Ny (t) + No(t) + N3(t) + N, (t)
The derivative with respect to time yields
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(a;N; —by1Nf + b;;N; N, — by 3Ny N3 — by Ny Ny)
du dN; dN, dN3 dN; |4(aNy —byyN3 +byyNyNy — byzNyN3 — by N,N,)
_ = + =+ = 2
+(agNy — bygyNZ + by NyN, + by N, N, + bysN3Ny)

Now & 4 su= (a1Ng —by1N$) + (@;N; — by N3) + (agN3 — b33N3) + (ayN, — byaN7)
"dt +8(N1 () + No (D) + N3 (t) + Ny(D))
du @ +8)? (@, +8)? (az+8)?  (as+5)? . (a; + &
dt | 4by, 4b,, 4bs, 4by,, T 2y,
(a2 +8)]° (a3 +8)]° (a5 + 8)]°
by [Ny — 2T p Ny — 222, [N, T
22 [ 2 2b22 33 3 2b33 44 4 2b44
du + Su o (a1 +8)? (a; +8)? (az+8)? (as+8)?
dt " 0T | aby, 4b,, 4bs, 4b,,
du
I + 6u < K (say)
Where K = Q% @+8" | @s+8)7 | @u+®” \ yicn forms a linear differential equation in u. upon
4byy 4b,, 4bys 4by,

solving we obtain, u S§+ Ce=%t where C is an integrating constant. Given t = 0,implies u = 0, we
determineC = —g. Consequently, we get u < %(1 —e7%) and since u >0 it follows that0 <u <

%(1 — e~%t). This implies that all solutions of the system are bounded.
Thus, the solutions to the system (1)-(4) conform within the bounded region w where

w = {(Nl(t), N, (1), N3(t), Ny(t))eRE: 0<u < g(l — e7%) + ¢, foranye > O}

This demonstrate that all species are uniformly constrained for any initial value in R%.
Based on the earlier results, we assert the presence of positive values for (84, B2, B3, B4) such that
u(t) c R} = {(Nl(t):Nz(t)'N3(t):N4-(t)): 0 <N () <f1,0 <N (1) <B,0=<N3(t) < 5,0 < Ny()
< B }
Hence, the solutions to the system (1) -(4) are proven to be uniformly bounded over time within its
environment. This concludes the proof.

6. Local stability of the positive equilibrium state
This section uses the variational (jacobian) matrix to examine the stability of the equilibrium for each
condition where a species is present or extinct in the ecological system. The output of the matrices, obtained
using the characteristic roots approach and the Routh-Hurwitz criterion, displays the stability performance at
each state. The variational matrix which is given by

A11 blZNl _b13N1 _b14—N1
bZlNZ AZZ _b23N2 _b24—N2 (5)
b31N3 b32N3 A33 b34N3
b41N4 b42 N4 b4-3 N4- A4-4-
Where A;; = a; — 2by1Ng + by Ny —bygNg — byyNy, Ay =a; — 2byy Ny + by Ny — byzNg — byyNy,
A3z = az — 2b33N3 + b3 Ny + b3;Ny + b3y Ny, Ay = a4 — 2byy Ny + by Ny + by Ny +bysNs

V =

Theorem: 6.1

The local steady state of the dynamic system (5) is unstable for the following states of equilibrium

(i) Trivial equilibrium point E3(0, 0,0, 0).

(if)Axial equilibrium point

(@ Ear (£,0,00), (0 Enz (0,22,0,0), (¢) Eas (0,0,2%,0),(c) Eas (0,0,0, 3.

Proof:

(i) The variational matrix of the system at the trivial equilibrium point E+(0,0,0, 0)produces positive eigen

values, denoted as A = a;, a,, az and a, which signify an unstable state due to the consistently positive
birth rate of the species. Thus, the equilibrium points Er in nature exhibit instability in their state of stability.
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(ii) (@)The eigen values of the variational matrix system at the axial point Eaq (i 0,0 O)for the first prey

are given by A= —a;, a, + b21ba—111, az + b31— and a, + b41 . Here the first eigen value is negative

and other three eigen values are positive. Thus the positive nature of these eigen values arises from the
species' birth rate and interactions with other species. Consequently, the equilibrium points Ea: indicate an
unstable state of steadiness and saddle point exists.

(b)The variational matrix of the system at the axial point E,, (0 20, O)for the second prey provides the

eigen values, represented as 1 = a; + by, ;—222, —a,, a3 + bay ;—222, and a, + byy .. Here the second eigen

value is negative and other threes are positive. Thus the positivity is attributed to the birth rate of the species
and the rate of interaction between the species. As a result, the state of steadiness is unstable and saddle point
exists at the equilibrium points Eaz.

(c)The eigen values resulting from the variational matrix of the system at the axial point E5 (0, O,ba—3, O)Of
33
the primary predator are given by A; = al—b13 , Ay = a, — b23b Az =—az, Ay =ag+
by ;‘—3.Here the third eigen value is negative. Then the Stablllty condition of the above eigen values as
33

follows,
i) The system is stable in NyN, N5 plane if a; < bz —%, a, < b,z —>thend; < 0, A, < 0,and A; < 0.
3 3% 3p 3

33 33
(ii) The system is unstable in N;N, Plane if a,; > b13ba—3, a, > b23ba—3then)tl >0, A, > 0.

33 33
But it observes thatA, > 0 and A; < 0. As a consequence, the equilibrium points at Eas exhibit unstable and
saddle point exists in terms of steadiness.
(d) The system of the variational matrix at axial point of secondary predator Ep, (0 0,0, ) gives the

eigen values A, =a; — b14b Ay, =a, — b24,b Az =az+ b34b A, = —a, Here the third eigen

value is negative. Then the Stablllty condition of the above eigen values as follows,
(i) The system is stable in N;N,N, plane if a; < b14;—‘*, a, < by, ;—4then A <0, A, <0,and A, <O.
44 44

(ii) The system is unstable in N;N, Plane if a; > b14;f;, a, > by, t%then?t1 >0, A, > 0.

But it observes that A; > 0 andA, < 0. Hence the state of steadiness is unstable and saddle point exist to the
equilibrium points Eaa.

Theorem: 6.2
The local steady state of the dynamic system (5) shows the stability condition for the following semi-interior
equilibrium point when two of the species extinct state.
(a) Equilibrium Point Esy(N;, N5, 0, 0) is unstable and saddle point exist,
(a1b11bay +a3bi1b13)(@zby1by, +a1babyy)

ifb;1b,, > by,b,; Or by;b,, < b;,b, and [ (alblzbzz +a,bs, )(a2b11b21 +ayby, )
(b) Equilibrium Point Esz(0, N, N, 0) is unstable and saddle point exist,
ifA, < 0,23 <0and (A; < 0orA; >0), A, > 0.
(c) Equilibrium Point Eg3(0,0, N3, N,)is asymptotically stable if(bs3b,, > bs,b,s)and

(azbssbas + azbssbss)(asbazbss—asbssbas)

> (agbsabaa +a4b34”)(asbssbaz +asbys”)
(d) Equilibrium stateEss(N;, 0,0, N,) is unstable and saddle point exist, if A; < 0,1, < 0and
A, <00r2; >0),A3>0 (always)
(e) Equilibrium Point Ess(N;, 0, N3, 0) is unstable and saddle point exist, if A, < 0, A; < 0 and
(A, < 0orA, >0),A, > 0 (always).
() Equilibrium Point Ese(0, N,, 0, N,) is unstable and saddle point exist, ifA, < 0, A, < Oand

(A <0o0rA; >0),A3 >0.

. Otherwise it is unstable.

Proof:

(a) The system of the variational matrix at predator’s free semi-interior equilibrium point Esi(N4, N5, 0, 0)in
matrix (5) gives the eigen values
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_ ((?Hbubzz +asby1byp) + (@byg by, + a1b21b22)> ]
by1by; — byzbyy

2 ((albubzz +a,b11b15) + (azbyg by, + 31b21b22))2 ((31b11bzz + 8,b11b15) (azby1bzy + a1ba1byg) — (arbipbys + azblzz)(azbubn + albzlz)ﬂ
+ —4 :
by1byy — byzbyy (by1bzz = byzbyy)

_ ((albnbzz +a5by1b1;) + (agbysbyy + a1}’21}’22))
byyb2s — biabay

b11bZZ _b12b21 (blleZ - b12b21)2
T = <a3b11b22 —azbyybyg +a1byybsy +aybipb3y +abygbs; + a1b21b32)
3 = and
b11b22 - b12b21
1 = <a4b11b22 —aybiobyy +a1byybyy +azbipbyy +azbyiiby, + a1b21b42)
4=
b11bZZ - b12b21
(agbyibgzt+azbyibyz)+(azbiibyytasbyibyy)
b111322_13121321
(a1b11b22+a2b11b12)(azbllbzz+a1b21b22)—(a1b12b22+a2b122)(a2b11b21+a1b212)
(by1bz2—b1b31)?
the first two eigen values. Then the roots of the above equation are real and negative or complex having
negative real part.So that the state will be asymptotically stable in N; N, plane. Butit is clear that
1o = <a3b11b22 —aszbyybyy +a1byybsy +aybipb3y +abybs; + a1b21b32)
3 = and
b11b22 - b12b21
_ <a4b11b22 —agbyby1 +a1byobyg +azbiabyy +abiibyy + a1b21b42)
Ay = :
. i b11b22 - b12b21 i .
are positive sign whereas b;;b,, > b;,b,; or negative sign whereas b;;b,, < by,b,;.
The stability condition is hold based on the following two cases,
(a1b11b2z + azby1byz)(azby1bgz +a1byybyy) >
(a1b12b22 + azb122)(32b11b21 + 31b212)
thenA; < 0,A, <0andA; > 0,2, > 0.
a;bi1byy +a3b11bg2)(@zbi1byy +a1bybyy) >
Case(ii): |fb11b22 <b12b21 and [( 1Y11V22 2V11 12)2( 2VY11V22 1Y21 %2)
(a1b12b22 + azby, )(azb11b21 + a;byy )
thenA; > 0,4, > 0andA; < 0,4, < 0.
Hence the system of predator’s free state V(E;)(N;,N,, 0, 0) is unstable and saddle points exists at the
coexistence state at both cases.
(b) The eigen values of the variational matrix are obtained at the semi-interior equilibrium point Es;

(0,N,, N3, 0) in matrix (5), where the second prey and primary predator coexist.
A

]|
2 |
_j<(31b11b22 +aybi1b1y) + (agbygbyy + a1b21b22)> 4 ((albubzz +a,b11b15)(azb11by; + a1byibyp) — (arbiaby;, + azb122)(azb11b21 + a1b212)>J

If by1by, > byybyq, then the sum of the roots ( ) is negativeand the

product of the roots( )is positivefrom

Case(i): If b;; by, > by,b,qand

_ (azb22b33 —azbyobys + a3b22b33+a2b32b33)
by2b33 + basbs,

byzbas + bysba, (byobss + by3bsy)?

_ <azb22b33 —azb;bys + a3bzzb33'f'512b32bas)
bz2bss + basbs,

1
2 +\](a3bzzbz3 — azbybss — a3b22b33—azb32b33)2 _4 ((azbzzbas — agh,,by3)(azby,bsz+azba,bys) + (a3b232_32b23b33)(33b22b32 + a2b322)

|

N =

| by,bs3 + basbs, (bazbsz + bazbs;)?
_ a1byyb33 +a;1by3bs; +azbyybss —azbipbys —azbyzby; —azbisbs;
M= b2bss + bysb and
22D33 + D23D3;
1 = <a4b22b33 + a4by3bs; +azbssby; —azbasbs, +azbsobys + a2b32b43> >0
4=
by2b33 + by3bs;

If the sum of the roots (azb22b33_a3b22b23+a3b22b33+azb32b33) is negative and the product of the roots
bz2b33+ba3bss
((a2b22b33—a3b22b23)(a3b22b33+a2b32b33)+(a3b232—a2b23b33)(a3b22b32+a2b322)
(bz2b33+b33b3;)?
third eigen values. Then the roots of the above equation are real and negative or complex having negative
real part. So, the state will be asymptotically stable in N,N; plane. But it is clear that

) is positive from the second and
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A1 > 0, When the condition exists for (a;by,bsz +a;bysbs, +ayby,bs3) > (azbyybaz +azbizby, +
azby3bsz)

A1 < 0,When the condition exists for (a;by,bzs + a;bysbs, +aybi,bs3) < (azbizbys + azbysby, +
azbisbs;)

and A, >0

Therefore,A, < 0, A3 < 0and A; < 0orA; >0, A, > 0 (always). Hence the system of second prey and the

primary predator state exists of V(Es,) (0,N,, N3, 0) is unstable and saddle points exists.
(C) The system of the variational matrix yields the eigen values at the semi-interior equilibrium point

Es3(0,0, N3, N,) in matrix (5) where the primary and secondary predators coexist.
}\1 — (a1b33b44—a1b34b43—a3b13b44—a4b13b34—a4b14b33—a3b14b43) < 0’ If b33b44 > b34b43
bs3b bs4b 233344_b34bb4% bysb b,4b
}\2 — (az 33044 —a2D34D43—3a3D23D44—34D23034 34024033 —a3D24 43) < 0.If b33b44 > b34b43
b33bss—b34bsz
_ (asbasbu + ayb33b3, — azbyshy, + 33b43b44)
b33b44 - b34b43

1
by =5 2 2 2
2 <33b33b44 + a4b33bsy — aybgshyy + a3b43b44) ((a3b33b44 + aybszbsy)(azbysbys—asbszby,) - (a3b34b44 + by, )(a4b33b43 + ashy; ))
+ -4 >
b33b44 - b34b43 (b33b44 - b34b43)
and
_ (asbasbu + a4bs3bsy —agbasby, + 33b43b44)
1 bssbyy — byybys
}\4 B E

<33b33b44 + a4b33bsy —aybyshyy + a3b43b44)2 ((a3b33b44 + aybszbsy)(azbysbys—asbszby,) - (a3b34b44 + a4b342)(a4b33b43 + a3b432)>
_ —4 -
b33b44 - b34b43 (b33b44 - b34b43)

The stability condition is based on following two condition hold

. [(azb3sbas +a4b33bss)(azbssbys—asbssbyy)]
Case (i) If bgs3bys > bs,.b,; and
33 Tad saTas | > (azbzabas + a4b342)(a4b33b43 + a3]3432) ]
and A; < 0, A, < 0. Hencethese eigen values are produced negative sign then the system of V(Eg3) (0, 0,
N3, N,) is asymptotically stable.

Case(ii) If bgz3bys < bssb,s; and

then A; <0, A, <0

[(a3bssbas + a4bssbss)(azbszbss—asbssbys)]
| > (a3babas + a4bss”)(asbszbas + azbss?)
and A; >0, A, > 0. Hence these eigen values are produced opposite sign then the system of the
stateV(Es3) (0,0, N3, N,) is unstable.

then A, >0, A, >0

(d) The eigen values of the variational matrix are obtained at the semi-interior equilibrium point
Ess(N;,0,0,N,) in matrix (5), where The first prey and secondary predator coexist.
1 = <32b11b44 + azby4ba; + a1byibyy —agbiabyy —agbiibyy — a1b24b41)
z by1bsq +byabyy
1, = <a3b11b44 +azby4byq +a1b31byy —agbzibyy +a4byibzs + a1b34b41)
g = >0
by1bas + biabay

A
o _ (a1b11b44 —a,byybyy +abygby, + a1b41b44)
1 by1bgs +bygbyy
T2 +\](a1b11b44 —azbyibys +asby by, + a1b41b44)2 —4 ((a1b11b44 —a,by1b1)(@sby1bag +a5bybyy) + (a4b142 - a1b14b44)(a4b11b41 + a1b412))
| by1bgs +b1sbyy (b11bas + bygbyy)? ]
and
Ay

_ <a1b11b44 —aybyibyy +asbyibyy + 31b41b44)
b11bgs + b1ybyy

b11bss +b1sbyy (by1bas + byybyi)?

If [(a1b11bsa — a4b11b14) (asb11bas + a1bagbas) + (asb1s® —a;bigbas)(aghbyibas + 31b412)] >0, then
the eigen values are produced negative ie., A; < 0, A, < 0.So, the state will be asymptotically stable in N;N,
plane.

But it’s observed that

A, >0, when the condition exists for (aybjibgs +aybiabsq + a1byibgs) > (agbigbyy +a4by1bay +
a1b4b41).
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A, < 0, when the condition exists for (aybjibss +aybiabsq + a1by1bys) < (agbyybyy +a4bi1bay +
a1bz4byy)

andA; > 0 is always positive

Hence, A, <0A, <0and A, <0or A, >0,A; > 0(always). Consequently, the system of the
state Eg4 (N3, 0,0, N,) is unstable and saddle point exists.

(e)The variational matrix of the system at the semi-interior equilibrium pointEgs( Ny, 0,N3,0) for the
coexistence of the first prey and primary predator produces the eigen values,

1 = <32b11b33 + aby3bzqy +a;by1b33 —agbyibiz —agbyibys — a1b31bz3)
2 b;1b33 + bysbsy
1 = <a4b11b33 + a4by3b3g +aibszbyy —azbizbyy +azbiibys + a1b31b43)
4 = >0
by1b33 + bysbsy

M
_ (a1b11b33 —azbyybyz +azbybas + 31b31b33>
by1b33 + bysbsy

[

_1

2 [+ (31b11b33 —agby;byz +azbyibss + a1k)31b33>Z _4 ((31b11b33 — azbyyby3)(azbyybsz +asbsybgs) + (a1b13b33 - a3b132)(a3b11b31 + a1b312)>
by1bsz + bysbsy (by1bss + bysbsy)?

_—_

and
As
[ _ <31b11b33 —agby;byz +asbyibas + a1b31b33) ]
1 by1bss + bysbsy
- 2| (a1b11b33 —azbyybyz +azby by + a1b31b33)2 4 ((a1b11b33 —azby1byi3)(azbyibss +asbsibss) + (a1b13b33 - a3b132)(33b11b31 + a1b312))|
- - 2
[ by1bsz + bysbsy (by1b33 + bysbsy) |

If (a;by;b3s — azbiibyiz)(azbyibss +a;bzbss) + (arbysbss — azhiz*)(azhyybsy +asbg;?) >0, then
the eigen values are produced negative ie., A; < 0, A; < 0.So that, the state will be asymptotically stable in
N;N; plane.
But it’s observed that
a1bsz1by3).
A, < 0, When the condition exists for (ayb;1bs3 + a,by3bs; +a;by1bs3) < (azbyibyz +azbi by +
a1bs1by3)
and A, > 0 is always positive.
Hence A; <0, Az <O0and A, <0o0rA,>0,A,>0 (always).Therefore, the system of the
stateEgs (N3, 0, N5, 0)is unstable and saddle point exists.
(f) The eigen values of the variational matrix are obtained at the semi-interior equilibrium point
Ess (0,N,,0,N,) in matrix (5), where the second prey and secondary predator coexist.
N = (31b22b44 + a1bz4baz+azbyobas —aybipbos—asbisby; — azb14b42>

! b22b4s + bysby, '
1, = <a3b22b44 + a3 byybyy +a4bsobsy +absyby; +azbsabyy — a4b24b32>

5 = >0,

by2b4s + boyby,

Ay
[ _ (32b22b44 — a4byybay +asbyobyy + azb42b44)
1 b22b4s + basby
T2 a;b;b4s — a4byybay + a4bybys +a3bysbay z (azb22b4s — a4by2bp4) (24b25b4s +a5bsrbas) + (azb24b44 - a4b242)(a4b22b42 + a2b422)
+ —4 >
| baybag + basby, (bazbas + b2abys)
and
Ay

_ <azbzzb44 — a4bybyy +a4bapbyy + 32b42b44)
bz2bas + basby,

T2 _ (azbzzb44 —aybybay +asbyybyy + azb4zb44)2 4 ((32b22b44 —ayby;b,4)(asbyzbyy +abysbyy) + (azbz4b44 - a4bz4z)(a4bzzb42 + azb422)>
b22bas + basby, (baobas + basbyy)?

If (azbz2bas —asbazbrs)(@sbrabay + azbyrbys) + (a2b24b44 - a4b242)(a4b22b42 + 32b422) >0, then
the eigen values are produced negative sign ie., A, < 0, A4, < 0. So, the state will be asymptotically stable in
N, N, plane.

But it’s observed that

Available online at: https://jazindia.com 451




Journal Of Advance Zoology

A, >0, when the condition exist for(a;by;bsy +ajbysbys+azbiabay) > (agbiabys+asbisba, +
azbysbyy)

A <0, when the condition exist for(a;by;bss +aibysbss+asbiabys) < (agbiabas+asbisby, +
azbi4bsz)

and A; > 0 is positive.

Therefore, A, < 0, A, < Oand (A1 < 0o0r Ay > 0),A3 > 0.Therefore, the system of the
state Eg4 (0, N5, 0, N,) is unstable and saddle point exists.

Theorem: 6.3

The local steady state of dynamic system (5) shows the stability condition when one of the species reaches
extinction at the specified semi-interior equilibrium point.

(9) The equilibrium point Es; (N1, N,, N3, 0) is unstable for the reason that A, > 0.

(h) The equilibrium point Ess (0, N5, N3, N,) is asymptotically stable if (a; + b;;N, —b;y3N3 —byyNy) < 0
andq; > 0,9, > 0,q3 > 0,q;9,>0and (q;9, — q3) > 0 are satisfied. otherwise it is unstable.

(i) The equilibrium point Ese (N;, 0, N3, N,) is asymptotically stable if (a, + by; Ny — bysN3 — byyN,) <0
and

r, >0,r, >0, 1r;3 >0, ryr, > 0and (r;r, — r3) > 0 are satisfied. Otherwise it is unstable.

(j) The equilibrium point Esio (N1, N,, 0,N,) is unstable for the reason that A; > 0.

Proof:

(9) The secondary predator free equilibrium point at Es, (N, N,, N3, 0) in matrix (5) then, the system of the
variational matrix is

[a; = 2by;N; +b1,N, — bysN; by, N; —bysN, _b14§1 1
V(Es7) = b21§2 az = 2byy N, + l121N1 —by3N; _—b23N2_ 3 —b24_N2
b3, N; b3, N3 ag — 2b33N5 + by N; + bs,N, _ b34N3_ 3
[ 0 0 0 as + by N, + by, N, + by N

The characteristic equation of the above matrix is
A3+ piA% + pod+ p3 = 0and (ag + by Ny + byyNy + bysNg) — 24, = 0
The roots of the variational matrix is A, = (a4 + bgyNy + bgyN; + byzN3g) >0
p1 = (a1 — 2byN; + by, N, —by3N;) + (ap — 2by,N, + by Ny — bysN3)
+ (a3 — 2bg3N3 + b3y N; + bgyN,)
p2 = [(az = 2b2,N; + by Ny — bysN3)(az — 2b33N; + byy Ny + by, N, ) + byzNybs, Ny
+[(a; — 2by;1N; + by,N, —by3N3)(ag — 2b3sN; + by Ny + by, N, ) + by3N;bs; Nj|
+[( a; — 2b11N1 + blZNZ - b13N3)(a2 - szzﬁz + b21N1 - bzsﬁs) - b12N1]321N2]
(az = 2by,N; + by Ny — bysN;)
(33 — 2b33N; + by Ny + bszﬁz) + b,3N;bg, Ny
—by,Ny [b21N2 (33 — 2b33N3 + bs; Ny + b32N2) + b23N2b31N3]
- b13N1 [b21N2b32N3 - b31N3(a2 - 2b22N2 + b21N1 - b23N3)]
By using Routh-Hurwitz Criterionp; > 0,p, > 0,p3 > 0, p;p, >0 and (p;p, — p3) > 0 then it is satisfied
the system is asymptotically stable in N;N, N5 plane. Otherwise it is unstable.
It’s observed that A, > 0 is always positive. Hence, the system of the stateEs, (N4, N,, N5, 0) is unstable
when A4, A, and Azis positive (A; > 0,A, > 0,A; > 0)and saddle point exist when 24,2, and A3is negative
A <0, A, <0,A3<0).
(h) The first prey free equilibrium point at Egg (0,N,,N3,N,) in matrix (5) then, the system of the
variational matrix is

p3 = (31 —2byy Ny +by;N, — b13N3)

a;, +by,N, —b;sN; — by, N, 0 0 0

V(Ess) = bz1§2 a — Zb22N2 - l123N3 - b24N4 __b23N2_ _ _b24_N2
b3, N; bs, N, a3 — 2bs3N; + by, N, + by, N, _ baN; B
bayN, b, N, basN, ay — 2byyNy + by N, +by3N;

The characteristic equation of the above matrix is
(al + b12N2 - b13N3 - b14N4) - )\1 = 0 and)\3 + ql}\z + qz)\ + q3 = 0
The roots of the variational matrix is A; = (a; +b;3N, —b;3N3 —by4N,)
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qq = (a2 — 2byN; — by3Ny — by Ny ) + (a3 — 2b33N3 + b3, Ny + bayNy) + (2 — 2bggNy + by, N,
+by3N3)

qz = [(33 — 2b33N; + b3, N, + b34ﬁ4)(a4 — 2byy N, + by N, + b43ﬁ3) - b34ﬁ3b43ﬁ4]

+[(az — 2by2N; — by3Ny — byyNy ) (ag — 2bggNy + by Ny + by3N3) — byyNyby,Ny|

+[(az — 2byN, — by3N3 — b24,N4)(a3 — 2b33N; + by, N, tb34ﬁ4)_+ b23NZE32N3]

(a3 — 2bs3N3 + b, N, + by Ny)

(as = 2bggNy + by N, + by3N3) — b3sN3bysNy

+b,3N5[b32N3 (s — 2bgaNy + bgyNy + bysN3) — by N3by, Ny |
—b24[b3,N3bs3N, — byyNy(az — 2b33N3 + by N, + bayNy)]
By using Routh-Hurwitz Criterionq; > 0,9, > 0,q3 > 0, q,9,>0 and (q;9, — q3) > 0 then it is satisfied
the system is asymptotically stable in N,N; N, plane. Otherwise it is unstable.

It’s observed that A, is positive (ie A; > 0),if (a; + b;;N, — by3N3 —by4N,) > 0,. Hence, the system of
the state Egg (0,N,,N3,N,) is unstable whereasA,,A; and A,are positive (A, > 0,A; > 0, A, > 0)and
saddle point exists whereasA, ,A; and A4are negative(A, < 0,A3 < 0,44 < 0).

It’s observed that A, is negative (ie., A; < 0),if( a; + b;,N, — b;3N3 — by,N,) < 0. Hence, the system of
the state Egg (0,N,,N3,N,) is asymptotically stable whereas),,A; and A4is also negative(d, < 0,43 <
0, A4, < 0). Otherwise it is unstable and saddle point exist whereas A, ,A3; and A,are positive(A, > 0,15 > 0,
Ay > 0).

(i) The second prey extinct equilibrium point at Egg (N;,0,N3,N,) in matrix (5) then, the system of the
variational matrix is

4z = (az - szzﬁz - b23N3 - b24ﬁ4)

[a;— 2by,N; = bysN; — by, N, by, N, ~by;N; b, N, 1

V(Ee) = | 0 az + by Ny = bysN; = by, N, o B 0 |
l b3, N, bs,N; az — 2bs;Ny + by N; + by, N, _ bagNy B

by N, by, N, busN, ay = 2bygNy + by Ny +DbysN;

The characteristic equation of the above matrix is
(a, + byyN; —byzNg —byyN,) =2, =0 and A3+ 122 +1,A4+15=0
The roots of the variational matrix is A, = (a; + by N; — by3Ng — by N,)
r; = (a; — 2byy Ny —313N3 —by,N,) + (33 — 2b33N; + bs; Ny + b34N4) + (a4 — 2bggNy + by Ny
+ by3N3)
Iy = [(33 — 2b33N; + by Ny + b34ﬁ4)(a4 — 2byyN, + by Ny + b43N3) - b34N3b43N4]
+[( a; — 2b; Ny —by3N; — b14N4)(a4 — 2byyNy + by Ny + b43N3) + b14N1b41N4]
+[( a; — 2by; Ny — by3N3 — b14N4)(33 — 2b33N; + by Ny + b34N4) + by3N; b3y Ns]
(a3 — 2b33N; + by Ny + by, N,)
(34 — 2byyN, + by Ny + b43N3) — b34N3bysN,
+b13§1 [b31§3 (34_— 2b44Ni+ by Ny + b_43N3) —_b34N3b41_N4]
—b14N1[b31N3bs3Ny — by Ny(az — 2bgzN3 + b3y Ny + by Ny)J
By using Routh-Hurwitz Criterionr; > 0,r, > 0,r3 > 0, ryr, > 0 and (ryr, —r3) > 0 then it is satisfied
then the system is asymptotically stable in N;N3;N, plane. Otherwise it is unstable.
If (az + byyN;y — bysNg —byyN,) > 0, it’s observed that A,is positive (ie., A, > 0). Hence, the system of
the state Egq (Ny,0,N3,N,)is unstable whereas A, ,A; and Ajare positive (A; > 0,43 > 0, A, > 0)and
saddle point exists whereasA; ,A; and Ajare negative (A; < 0,23 < 0,A, < 0).
If (a5 + by Ny — bysN3 —byyN,) < 0,It’s observed that 2, is negative (ie., A, < 0), Hence, the system of
the state Egq (N;,0,N3, N,)is asymptotically stable whereas A, ,2A; and A4is also negative(A; < 0,43 <
0,A, <0).
Othérwis?a, it is unstable and saddle point exist whereas A; ,A; and Ajare positive (A; > 0,3 > 0, A, > 0).

(j) The primary predator extinct equilibrium point at Eg;o (N, N,, 0, N,) in matrix (5) then, the system of the
variational matrix is

r; = (31 - 2b11N1 - b13N3 - b14N4)

[a; = 2b;; Ny + by, N, — by, N, b1, N, —by3N; b1, N; 1

V(Esyo) =| b, az = 2b;Np + by Ny —byuN, __bzsﬁz_ _ —b,,N, I
0 0 az + bz Ny + b3,N, +bsy Ny 0 _
b4 N, by, N, basN, ay = 2bssNy + by Ny + by, Ny
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The characteristic equation of the above matrix is

(az +b3yN; +b3oNy +b3yNy) =23 =0 and A3 + 5,22 + 5,0 +53=0

A3 = (ag + b3y Ny + bgyNy + bgyN,) >0

s; = (a3 — 2byy Ny +_b12N2 —by4Ny) + (32 — 2byNy + by Ny — b24ﬁ4) + (a4 — 2bygNy + by Ny

+ by2N)
sz = [(az = 2b2aNy + by Ny — byaNy ) (as — 2bagNy + bay Ny +bypNy) +bysNoby,Ny|
+[(a; = 2by1N; +b1oN, —b1aNy)(ag — 2bgaNy + by Ny + byyNy) + byaNiby Ny
+[(a; = 2by; Ny +by,Ny —bi4N,)(az = 2b2,N; + by Ny —bysN,) — bypNiby Ny
(az = 2byN, + by Ny — byuNy)

(a4 — 2bgaNy + bgy Ny +bypNy) + bysNoby,Ny
—b12§1 [b21§2 (34_— 2b44ﬁi+ byt N; + b_4»2N2) +_b24N2b41_N4]
—b14N1[b21N2byso Ny — by Ny(@z — 2bza Ny +by1 Ny — by Ny )]

By using Routh Hurwitz Criterion s; > 0,s, > 0,53 > 0, s;5,>0 and (s;s, — s3) > 0 then it is satisfied

then the system is asymptotically stable in N;N,N, plane. Otherwise it is unstable.

It’s observed that A; > 0 is always positive. Hence, the system of the state Eg;, (N5, N,,0,N,) is unstable
when A;,A, and Ajare positive (A; > 0,A, > 0,2, > 0) and saddle point exist when A;,A, and Ajare
negative (ie.,A; < 0,A, < 0,2, <0).

Sz = (31 — 2b;;N; +by,N, — b14N4)

Theorem: 6.4

The coexistence steady state of the dynamic system (5) is asymptotically stable for the positive interior
equllibrlum pOInt at EPl(Nl,Nz,N3,N4) |f h1 > O,hlhz - h3 > 0, (h1h2h3 - h% - h%h4) > O,andh4 >
Oholds.

Proof: All the species are exist at Ep; (N, N, N3, N,;) in matrix (5) then, the system of the variational matrix
is

V(Ep1) _ _ _ _ _ _ _
a; — 2by; Ny +bypNy — by3N3 —byyNy by,Ny —by3N; —b1aN;
_ b,:N, a, — 2by, N, + byy Ny — bysNy — by, N, —by3N, —byN,
b3 N, b3,N; ag — 2bgaN3 + b3 Ny + by, N, +byyN, b34N;

by N, by, N, by3N, a4 — 2byyNy + gy Ny + byoN, + byl

The characteristic equation of the above matrix is A* + h;A3 + h,A? + h;A + h, =0
hy = (a; = 2by; Ny +_b12N2 —_b13N3 —_b14N4) 4_‘(32 — 2by;N; +_b21N1 —_b23N3 —_b24N4) _
+(ag - 2b33N3 + b31N1 + b32N2 + b34,N4,) + (34 - 2b44,N4 + b41N1 + b42N2 + b43N3)

h, = [(a; = 2by;N; 4 by,N; — by3Ny — bygNy)(a; — 2b, Ny + by Ny — bysNy — byyN,y)
— by;N;by Ny
+[(32 — 2by, Ny + by Ny — bysN; — b24N4)(a3 — 2b33N3 + by Ny + b3y N, + b34N4) + b23N2b32N3]
+[(a3 — 2b33N; + by Ny + by, N, + b34ﬁ4)(a4 — 2byyN, + by Ny + by Ny + b43N3) — b34N3by3N,]
"‘[( a; — 2b;yNy +by;N, — bysN; — b14ﬁ4)(a4 — 2byyNy +byy Ny + by, N, + b43N3) +by4Nybyy Ny
+[( a; — 2by; Ny + b;;N, — by3Ng — b14ﬁ4)(a3 — 2b33N3 + by Ny + by, N, + b34N4) + by3N; b3y Ns]
+[(32 — 2by, Ny + by Ny — bysN; — b24N4)(a4 — 2byyNy + byy Ny + by N, + b43N3) + b24N2b42N4]

(az = 2byN, + by Ny — bysN3 — byuN,)
hs = (@1 — 2by3 Ny + byaN; — bygNs = byyNy) | (a3 — 2bzNj + by Ny + by, N, + byyN,)
+b,3N, b3, N3
—by, Ny [b21N2 (33 — 2b33N; + by Ny + by, Ny + b34N4) + b23N2b31N3]
—by3N; [by1N;b3, N5 — b3y N3(ay — 2by Ny + by Ny — bysNy — byaNy)]
(as — 2bg3N3 + by Ny + bsyN, + bayN,) ]
(a4 = 2bggNy + bgq Ny + byyNy + bysN3) — bssNabysNy
+by3N, [(b32N3 (a4 — 2basNy + byy Ny + by N, + b43N3)) - b34ﬁ3b4zﬁ4]
—b,4N,[(b32N3ba3Ny — byyNy(az — 2b33Ny + by Ny + by Nj + bsaNy))]
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(a3 — 2b33N; + bgy Ny + b3, N, + bgyN,)
+(1a; — 2by1N; 4+ byoN, —by3Ny — biaNy) [ (ay — 2bgy Ny + byy Ny + by N, + bysN3)
—b34N3bysN,
+by3N; [b31N3 (34 — 2bgyNy + by Ny + by, N, + b43N3) - b34N3b41N4]
—b14N;[b31N3bs3Ny —byiNy(az — 2bs3N3 + by Ny + b3, N, + bysNy)
(az = 2bypNy + by Ny — by3N3 — bysNy)
+(a; — 2by3 Ny + byyN, — bysN3 — byyNy) (ag — 2bggNy + by Ny + by Ny + bysNs)
+by4N, by, N,
—bi,N; [(b21N2 (a4 — 2bsgNy + byy Ny + by, N, + b43N3)) + b24N2b41N4]
—b14N;[(b21N;byy Ny — byyNy(az — 2byo N, + by Ny — bygN3 — byuNy))]
hy = (a; — 2by;N; +b;,N, —by3N3 — byyN,)
(8 — 2byNy + by Ny — bysNs — byey) [ (8 =2b3sNs +bsiNa +b5oNa +b3aNa) ]
(a4 — 2b4aNy + bagN; + by Ny +by3N3) — byyN3bysN,
+b,3N, [b3,N3(as — 2basNy + by Ny + bayNy + bysN3) — byuN3by, Ny |
—b4N, [b32N3b43N4 - b42N4(33 — 2b33N3 + by Ny + b3, N, + b34N4)]
b,1N[(a3 — 2b33N3 + b3y Ny + b3, N, + byyN,)
(ag — 2bgaNy + bgg Ny + by N, + by3N3) — bygNabysNy]
~bizNy +b,3N, [(b31N3(a4 — 2byyNy + byy Ny + by N, + b43N3)) b34N3b41N4:

| S—

l—b24N2 [(b31N3b43N4 - b4,1N4(a3 — 2b33N3 + by Ny + b3y N, + b34N4)):
'[b21N2(b32N3(a4 — 2bysNy + by Ny + by, N, + b43N3) - b34N3b42N4)]_
—(az — 2byaNy + by Ny — byzN3 — byyN,)

[b31N3(a4 — 2bygNy + byg Ny + by, N, + b43N3) - b34N3b41N4]
—b24N2[(b31N by;N, — b3, N3 b41N4)] |
[b21N2 (b32N by3N, — b42N4(a3 — 2b33N3 + by Ny + b3y N, + b34N4))]
+by,N, —(ay — 2byN, + by Ny — bysN3 — b24N4)

[b31N3basNy —bysyNy(ag — 2b33N; + b3y Ny + by, Ny + byyN, )|

L _b23N2 [(b31N3b42N4 - b32N3b41N4)]

According to Routh Hurwitz Criterion is locally asymptotically stable at the equilibrium
point Ep; (N;, N2, N3, N,). If hy > 0,h;h, —hz >0, (hyhyhy —h3 —h2h,) > 0 andh, > 0 If any one of
the four conditions is violated, then the systems will no longer stable at the equilibrium point Ep;. Any one of
our considered two predators has a great effect on the two prey populations and on the rest considered
predator species. So, a small change in their populations can make a great impact on the rest of the
populations.

7. Global Stability Analysis

It states that stability analysis is performed using the Lyapunov function to determine the global stability
relative to the nearest equilibrium point of the state.

Theorem: 7.1

The global steady state of the dynamic system (1) shows the stability condition for the following Semi
interior equilibrium point when two of the species extinct state.

(i) The semi interior equilibrium state Eg, (Nl,ﬁz, 0,0) of the four species is globally asymptotically stable,

. b b b b.
if(byy > 22272) and (by, > 2E02),

@ii) If (b22 +@) > 0 and (b33 + @) > 0,then the semi interior equilibrium state
Es,(0,N,, N3, 0) of
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the four species is globally asymptotically stable.

(iii) If the condition (b33 > %) and (b44, > b“zﬂ) hold, then the semi interior equilibrium state
Es3(0,0, N3, N, )of the four species exhibits globally asymptotically stable.

(iv) If the condition (b11 + %) > 0 and (b44 + %) > 0 is satisfied, then the semi interior
equilibrium

state E, (N4, 0,0, N,,) of the four species is globally asymptotically stable.

(v) |If (bn + %) > 0and (b33 + @) > 0,then the semi interior equilibrium state
Es5(N1,0,N3,0) of

the four species is globally asymptotically stable.

(vi) If both (b22 + b“zﬂ) > 0 and (b4,4 + %) > 0, then the semi interior equilibrium state

Egq (0, N,,0, N4) of the four species is established as globally asymptotically stable.

(i) Proof:
Let us take the system of the semi interior equilibrium state by applying Lyapunov function

_ — . — [N —y — [N
V(Ny,Ny) = (N, — Ny) — Nyln _—1] + (N, = N3) — Nyin [_—2]
Ny N,

av  dn, N;] dN, N,
ey Fas | i | Qi
@& @ TN T TN,
:_[N1 - N_1](a1 - b11N1_+ b12N2)_+ [Nz - Nz](az — by N, + by Np)
Substitute al = bllNl - blZNZ y az = bzzNz - b21N1

=—[m —Nl]z (b11 _@)_[Nz —NZ]Z (bzz _%>

av _ by, + b by, + b
=<0, zf(bll>%)and(bzz>%)

Thus, the given system Eg; (N4, N,, 0,0)is globally asymptotically stable.
(ii) Proof:
Let us take the system of the semi interior equilibrium state by applying Lyapunov function

_ _. — [N —y - [N
V(N3 N;3) = (N, — N,) — Nyln [:2] + (N3 —N3) — N3ln [_—3]
N, N,

dv _ dN, ) N, N dNs N,
dt  dt N,| = dt N,
= [_Nz - Nz]_(azNz - bzzliz - b231i3) + [N3 — N3](as — b33N + b3, Ny)
Substitute a, = bzzNz + b23N3, as = b33N3 - b32N2

~ 12 baz — b3, < 12 by3 — b3,
= —[N; —N,] (bzz + T) —[N; = N3] (b33 + T)
av b23 - b32 b23 - b32
E<0, (bzij)>Oand <b33+T>>0
Hence the system described by ESZ(O, N,, N3, O)attains globally asymptotically stable.
(iii) Proof:
Let us take the system of the semi interior equilibrium state by applying Lyapunov function
_ N A —y = [N,
V(N3,Ny) = (N3 = N3) — N3ln|=| + (N, —N,) = N,In|=
N3 Ny
dV _ dNj ) N, N dN, N,
dt  dt N;| = dt N,
=_[N3 - NE] (az — b33N3_+ b34N42+ [N4 - N4](a4 — byyNy + by3N3)
Substitute a3 = b33N3 - b34N4 y a4 = b44N4 - b43N3
b3y + bys

— — b3y + b
= —[N3 - N3]2 (b33 - T) —[N4 - N4]2 (b44 - %)
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v _ by, + b by, + b
<o, lf(b33>%>and<b44>%)

Therefore, the system characterized by Es3(0,0, N3, N, )achievesglobally asymptotically stable.
(iv) Proof:
Let us take the system of the semi interior equilibrium state by applying Lyapunov function
N,
V(Ny,N,) = (N, —N;) =N ln[ ] +(Ny—Ny) — N4ln[ ]
Ny Ny
dv  dN, N1 dN, N,
@ a i A
= [N1 N1](a1 by Ny — b14N4) + [N4 N4](a4 baaNy + byyNyp)
Substitute a; = by;N; + by4Ny, @y = byyNy — by Ny

by — b _ bia—b
= —[N; - N,] (b11 +%) [N, - N4]2 (b44 +%)

dv biy—b bis—Db

- <0, if(b11+%) > 0 and <b44+%> >0
Hence, the system represented by ES4(N1, 0,0, N4)attains globally asymptotically stable.
(v) Proof:

Let us take the system of the semi interior equilibrium state by applying Lyapunov function

V(ML W) = (N —,) - len[ ] + (Ny —Ns) = Nyln [&]
Ny N3
w_anf, ) ol T,
dt . de at |7 TN,
=[N, — Nl](al —by1N; — b13N3) + [N — 3](a3 b33N3 + b3 N;)

Substitute a, = bllﬁl + b13N3, as = b33N3 - b31N1
~ 12 by — bz — bz
= ) i (25

av bi3—Db
— <0, if(b11 132 +T“>>0

Thus, the system described by ESS(NI, 0,Ns, O) attains globally asymptotically stable.

(vi) Proof:
Let us take the system of the semi interior equilibrium state by applying Lyapunov function

_ _ . — [N _ . — [N
V(N2 N,) = (N, = Np) = Nyln [_—2] + (N, —N,) = Nuln [_—4]
N2 N4
v _dN; [ No] dN,[ Ny
dt  dt N| " de|T N,

=_[N2 - Ni] (az — by N, —_b24N4)i' [N4 - N4] (ag — byaNy + byyN3)
Substitute a, = b22N2 + b24N4, Ay = b44N4 - b42N2
= 12 bya — by = 12 bya — by
= —[N; = N (bzz + T) —[Nas = N, (b44 + T)
av byy, — b byys — b
- <0, if(b22 +%) > Oand(b44+%) >0
Thus, the system denoted by Egq (O,Nz, 0, N4)demonstrates globally asymptotically stable.
Theorem: 7.2

The global steady state of dynamic system (1) shows the stability condition when one of the species reaches
extinction at the specified semi-interior equilibrium point.

(i) The semi interior equilibrium state Eg, (N4, N, N3, 0)of the four species is globally asymptotically

Stable, if (b11 +w) >0, (bzz + M) S 0 and (b33 + b31—b32;b13—b23) >0,

(i) 1F  the  condition (by, + 2R 5, (g, 4 2220 D0e00) 5 0 gg by, +
b24—b42—b43—b34) >0

2 — — —
is satisfied, then the semi interior equilibrium state Esg(O, N,, N, N4)of the four species is globally

bz —b
dt + —31) > O and <b33 13
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asymptotically stable.
(iii) The semi interior equilibrium state Eso(N;, 0, N3, N, )of the four species is globally asymptotically

stable, if (b11 + M) >0, (b33 + M) S 0 and (b44 + b14—b41;b43—b34) > 0.

(V) If the condition (byy + PRI 5, (py, 4 242212002) 5 gng (b, +

b14+b24—b41—b42) >0
2 — — —
holds, then the semi interior equilibrium state Es;o(Ny, N5, 0, N4 )of the four species is globally

asymptotically stable.

(i) Proof:
Let us take the system of the semi interior equilibrium state by applying Lyapunov function
o — = [N A —y = [Ng
V(Ny,N3,N3) = (N; = Ny) — Nyln|=| + (N, = N;) = NyIn |=| + (N3 — N3) — N3in|=
N, N, N,

dv  dN, N;] dN, N,]| dN;, N
—= -2+ 21 -E+ =212
de ~ ar | N | T ac | TN, T | TN,

= [N1 - N1](a1 — by Ny + b1_2N2 — by3N3) + [Nz - Nz](az — by Ny + by Nyby3N3)
. . +[N3: N3](a3 - b'DEN3 + b3iN1 + b3iN2) _ . .
Substitute a, = b11N1 - b12N2 + b13N3 y Ay = b22N2 - b21N1 + b23N3, as = b33N3 - b31N1 - b32N2

— 42 by3—by; — by — bsy — 12 by3—by; — byq — b3,
:_[Nl_Nl] (b11+ 2 >_[N2_N2] (b22+ 2 )

— by3 + b3 — b31—bs;
[Ny = W] by + 22222
av ] bia—bi, — b,y — b
at =Y (bll ' 13b 12b 2 21b 31b> . bs—b b b
<b22+ 137012 ’ 21 31)>0and (b33+ 317032 - 13 23>>0

Hence, the system denoted by (N3, N,, N3, 0)exhibit globally asymptotically stable.
(ii) Proof:
Let us take the system of the semi interior equilibrium state by applying Lyapunov function
V(Nz,ﬁ3,ﬁ4) = (NZ - Nz) - Nzln [&:l + (N3 - N3) - N3ln [&:l + (N4_ - N4) - N4ln I:&]
N, N3 N,
av  dN, N,] dN; N3] dN, N,

dt ~ dt AT _N3+dt N,
= [Nz - Nz](az — by, Ny — byzNg — b24N4)_+ [N3 - Ns](a3 — b33N3 + b3, N, + b3aN,)
+ [N4 - N4](a4 — bygNy + byy Ny + by3N3)

Substitute a, = bzzﬁz + b23ﬁ3 + b24,N4,, az = bggﬁg - bgzﬁz - b34ﬁ4 y Ay = b44ﬁ4 - b42N2 - b43ﬁ3

_ bys+bys — by — b — by3—bz, — bas — b
_[NZ_NZ]Z (b22+ 23T 024 - 32 42)—[N3—N3]2 (b33+ 237032 - 34 43)

[Ny = W] (as +

by — by — byz — b34)
2

byy —bgy —byz — b
>Oand<b44+ 24 422 43 34)>o

As a result, the system characterized byEsg(0, N5, N3, N,,) attains globally asymptotically stable.
(iii) Proof:
Let us take the system of the semi interior equilibrium state by applying Lyapunov function

_ . _ [N . — [N . — [N
V(Ny, N3, N,) = (N, = N;) = Nyln [_—1] +(N; —N3) — N;In [_—3] + (N, —N,) = N,ln [_—4]
Ny N3 Ny
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av _dN [ Ni] dN;[ N3] dN, . N,

- @ | N @l T,
= [N1 - N1](a1 — b11N;y — by3N3 — b1y Ny) +_[N3 3](‘13 — b33N3 + b3 Ny + b3aNy)
+ [N4 - N4](a4 — baaNy + byy Ny + bysNs)

Substitute a; = by Ny + b13N3 + by4Ny, a3 = b33Ny — b31 Ny — b3aNy, a4 = byaNy — by Ny — bysN

[N, - —1]2 <b11 + bi3+b1g —2b31 - b41) N5 - N3]2 <b33 + b13—b3q —2b34 - b43)
- —[N4 _ N4]2 (b44 n b1y — byy ; byz — b34)
C;_‘: <0, if (b11 4 bi3+b14 _2b31 - b41) >0,
(b33 " by3—b3q —2b34 - b43> > 0 and (b4,4, n bis — byy ; bys — b34) S0

Thus, the system describe by Eso(Ny, 0, N3, N, )is globally asymptotically stable.
(iv) Proof:
Let us take the system of the semi interior equilibrium state by applying Lyapunov function

_ . _ [N . — [N . — [N
V(Ny, N, N,) = (N, —N;) = Nyln [_—1 + (N, —N;) = N,In _—2] + (N, —N,) = N,ln [_—4]
Ny N> N,

dV  dN N dN. N dN, N
_ 121 2|11 22 alg

at T dr T T |UTN,
= [N1 - N1](a1 — by Ny + b12N2 b14N4) +_[N2 2](‘12 by, Ny + by1Ng — by Ny)
+ [N4 - N4](a4 — bygNy + by Ny + byyN;)

Substitute a, = bllﬁl - blZNZ + b14N4, a, = bzzﬁz - b21N1 + b24ﬁ4 , Ay = b44N4 - b41N1 - b42N2
= 12 bia—by3 — by — bay = 12 bys — by — b1y — by
—[Ny = N4 (bll + > )—[Nz — Ny (bzz + > )
— 12 bis + by — byy — by
—[Ny — N4 <b44 + 5 )
av bis—bi; — b1 — b
Y <o, if(b11+ 147 D12 _ 21 41>>0’

dt
byy —byy — b1y — b big+Dbyy — by — b
(b22 24 21 - 12 42) > 0 and <b44 et 24 - 41 42) >0
Thus, the system, characterized by Eg; (N3, N3, 0,N,) attains globally asymptotically stable.
Theorem: 7.3
If the condition
(bll + b13+b14—b12;b21—b31-b41) >0, (bzz + b23+b24-b21;b12-b32—b42) >0, (b33 + b13+b23—b31;b32—b34—b43
(b44 + b14+b24—b41;b42—b43—b34) >0

satisfied, then the positive interior equilibrium state Ep;(N;,N,, N3, N,)of the four species is globally
asymptotically stable.
Proof:
Let us take the system of the positive interior equilibrium state by applying Lyapunov function

(N, —N,) — Nlln[ ]+(1v2 Ny) — Nzln
: Y

)>0

V(N,,Ny, N3, N,) =
+(N;3 —N3) — N3ln[ ]+(N4 N,) —Nyln

av _ dn, 1v1 dN, [ N,] | dNg N3 dN4

dc  dt dr |T N, | dt tar _N_4
Determine % which follows

Available online at: https://jazindia.com 459



Journal Of Advance Zoology

[Ny = N1](ay = b1y Ny + by;N; — byzN3 — byyNy)
_ +[N2 - Nz](az — byyNy + by Ny — byzNy — byyNy)
+[N3 — N3] (az — b33N3 + b3y Ny + b3aNy + by N,)
. ‘i[N4 - Nﬁ] (as — %41\’4 + by Ny +_b42N2 +_b43N3) B _
Substitute @, = byy Ny — by,Ny + bysNa + biaNay Gy = byyNy — byy Ny + bysNs + by N, ,
az = b33N3 - b31ﬁ1 - b_32N2 - b34ﬁ4 o Ay = b44ﬁ4 - b41ﬁ1 - b42N2 - b43N3 )
—[N1 B Nl]Z (bn 4 biz + bisy — byy — byy — b3y — b41)

2
_ b,» +b,s —b,s —bs, — bz, — b
—[N, _Nz]z(bzz 4 223 T D24 — D21 _ 12 — D32 = Dygp
- — 12 bz +by3—bzy — bz —bzy —bys
—[N3 — N3] (b33+ >
_ b4 +bys — by — by, —bsz — b
_—[N4 —N4]2<b44 et 24 41 - 42 43 34)_
dv
a<0,
b;zs + by — by, — b,y —b3; —Db b,s +b,s, — b,y —b;, — by, — b
if <b11 n 13 14 12 : 21 31 41) >0, <b22 N 23 24 21 : 12 32 42) >0,
<b33 + by3 + byz—bsy —2b32 —bgy — b43> >0, (b44 + bys + bys — by ;b42 — bz — b34> >0

Therefore, the system, as described by Ep, (N3, N5, N3, N, )achieves globally asymptotically stable.
8. Conclusion

This research explores a four-species biological model, emphasizing mutualism and predation interactions.
The analysis aims to provide a comprehensive understanding of stability properties at various equilibrium
points in the dynamic system. The variational matrix analysis, conducted from E;toEp,, reveals stability
conditions dependent on the relationships between coefficients. The system is deemed asymptotically stable
if specific conditions are met; otherwise, it is considered unstable. The study examines the coexistence of
species, shedding light on their survival dynamics within the environment. Prey exhibit extended survival
when they have access to plentiful food resources that are shared among the individuals within the species
group in the region. Similarly, predators can sustain themselves to some extent by fulfilling their dietary
needs through mutualistic interactions with either the same or other types of predatory species when prey is
unavailable. However, their survival is significantly compromised in the complete absence of prey. The study
also notes a potential reduction in species population density when prey and predators directly interact.
Validation involved a comprehensive analysis of species coexistence stability at each equilibrium phase, both
locally and globally, using the Routh-Hurwitz criterion and Lyapunov function. This approach deepens our
understanding of the delicate balance these species achieve in their ecological niche, providing insights into
coexistence and competition dynamics within diverse ecosystems. Ultimately, the research significantly
contributes to the broader field of ecological studies, illuminating the intricate complexities inherent in
interactions within diverse ecosystems
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