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Abstract 

 

The growth of smart gadgets connected via the Internet of Things (IoT) in today's 

modern technology landscape has substantially improved our everyday lives. 

However, this convenience is juxtaposed with a concomitant surge in cyber threats 

capable of compromising the integrity of these interconnected systems. 

Conventional intrusion detection systems (IDS) prove inadequate for IoT due to the 

unique challenges they present. We propose and evaluate an intrusion detection 

system (IDS) based on a hybrid Convolutional Neural Network-Long Short-Term 

Memory (CNN-LSTM) model in this paper. The model is designed to capture both 

temporal and spatial patterns in network data, offering a robust solution for 

detecting malicious activities within IoT environments. The CNN-LSTM model 

displayed excellent accuracy, reaching 98% in both multi-class and binary 

classifications when trained on the UNSW-NB15 dataset. Furthermore, we explore 

the real-world applicability of the model through testing on Raspberry Pi, 

showcasing its effectiveness in IoT scenarios. The system is augmented with alert 

mechanisms, promptly notifying relevant parties upon intrusion detection. Our 

findings highlight the CNN-LSTM model's efficacy in strengthening IoT network 

security. 

 

Keywords - IoT Security, Deep Learning, Intrusion Detection, Cybersecurity, 

Network Data Analysis, Raspberry Pi, Alert Mechanisms. 

I. INTRODUCTION 

 

The swift growth of the IoT has culminated in a moment of unmatched connectedness, integrating smart 

capabilities into ordinary things ranging from domestic appliances to industrial gear. This transformative 
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integration, while enhancing efficiency and convenience, has concurrently exposed a multifaceted landscape 

of cybersecurity challenges. As IoT devices permeate diverse sectors, the need to fortify these interconnected 

ecosystems against malicious activities becomes not only a technological imperative but a crucial aspect of 

safeguarding sensitive data, privacy, and critical infrastructures. Amidst the promising landscape of IoT 

applications, security concerns loom large. The inherently heterogeneous and dynamic nature of IoT 

environments poses unique challenges for traditional security paradigms. Conventional intrusion detection 

systems often struggle to adapt to the diverse data formats, communication protocols, and contextual intricacies 

inherent in IoT networks. In this context, the development of advanced and adaptive security mechanisms is 

imperative and the IoT system’s integrity, confidentiality, and availability must be ensured. 

In response to these challenges, this paper introduces a cutting-edge Intrusion Detection System (IDS) built 

upon a hybrid CNN-LSTM model. This innovative approach capitalizes on the advantages of both 

Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks, aiming to address 

the nuanced security requirements of IoT environments. The CNN-LSTM model designed with dual purpose: 

to capture spatial features through CNNs, adept at recognizing patterns in data, and to understand temporal 

dependencies through LSTMs, which excel at modelling sequential information. This amalgamation allows 

the model to comprehend the intricacies of IoT network traffic, discerning normal behaviour from potentially 

malicious activities in a holistic and adaptive manner. The assessment of the proposed CNN-LSTM model 

extends beyond theoretical evaluations. We utilize the UNSW-NB15 dataset, a comprehensive repository of 

diverse network data encompassing various attack scenarios, to rigorously evaluate the model's accuracy in 

both multi-class and binary classifications. Our objective is to demonstrate the robustness of the model in 

distinguishing between benign and malicious network behavior across different attack categories [8]. 

Furthermore, recognizing the practical constraints and real-time demands inherent in IoT scenarios, we conduct 

experiments deploying the CNN-LSTM model on Raspberry Pi, a widely adopted platform in IoT applications. 

This real-world validation serves to illustrate the model's applicability, efficiency, and resource adaptability in 

authentic IoT environments. In subsequent sections, we provide a detailed exploration of the CNN-LSTM 

model's architecture, elucidating the underlying mechanisms that empower it to effectively tackle the 

intricacies of IoT network security. Additionally, we delve into the broader implications of IoT security 

breaches, emphasizing the pressing need for advanced intrusion detection mechanisms to fortify IoT 

ecosystems. Through this research, we aim not only to contribute a robust solution to the evolving challenges 

of securing IoT environments but also to stimulate discussions and innovations in the realm of adaptive and 

resilient IoT security. As we navigate the intricate landscape of IoT applications, the development of 

sophisticated security measures becomes pivotal in ensuring the continued growth and reliability of these 

interconnected systems. 

 

II. LITERATURE REVIEW 

 

The landscape of Intrusion Detection Systems (IDS) is vast and has witnessed significant evolution in response 

to the ever-growing sophistication of cyber threats. A comprehensive review of the literature reveals diverse 

approaches, methodologies, and algorithms employed in the quest for enhancing the security posture of 

networked systems. The following sections provide an overview of key themes in IDS literature, encompassing 

traditional methods, machine learning-based approaches, as well as the current issues provided by the IoT. 

Traditional IDS methods have laid the foundation for intrusion detection research, primarily focusing on rule-

based and signature-based detection. Rule-based IDS operate by defining explicit rules that characterize known 

attack patterns. While effective against known threats, their rigidity renders them susceptible to evasion 

through novel attack vectors. Signature-based IDS rely on a database of predefined signatures or patterns 

associated with known attacks, making them efficient for recognizing well-established threats. However, their 

efficacy diminishes in the face of polymorphic or zero-day attacks [4][6]. 

 

Anomaly-based detection methods depart from the predefined patterns of signature-based approaches, seeking 

to identify deviations from normal system behaviour. Machine learning, particularly unsupervised learning, 

plays a pivotal role in anomaly detection. One-class SVMs, clustering algorithms, and neural networks are 

commonly employed to model normal behaviour and flag deviations as potential intrusions. While anomaly 

detection excels at identifying novel threats, it also introduces challenges related to false positives and the 

dynamic nature of network behavior [2][3]. 

The integration of machine learning techniques has ushered in a new era in intrusion detection, leveraging the 

power of data-driven models to adapt and learn from evolving threats. Supervised learning algorithms, such as 

Support Vector Machines (SVM) and Random Forests, utilize labelled datasets to train models for accurate 
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classification. Unsupervised learning, exemplified by clustering algorithms and autoencoders, excels in 

discerning anomalies without explicit labelling [1][5]. 

Recent advancements in deep learning have propelled the field of intrusion detection towards more 

sophisticated and adaptive solutions. CNNs and Recurrent Neural Networks (RNNs) offer the ability to extract 

temporal and spatial features, respectively, enhancing the detection of complex attack patterns. Hybrid models, 

such as the combination of CNNs and LSTMs networks, have shown promise in capturing both temporal and 

spatial aspects, particularly relevant in dynamic network environments [7][8]. 

The emergence of the Internet of Things presents a unique set of challenges for intrusion detection. The 

heterogeneity of IoT devices, diverse communication protocols, and the sheer volume of data generated 

necessitate tailored security measures. Traditional IDS models face limitations in adapting to the idiosyncrasies 

of IoT environments. Machine learning and deep learning-based IDS, especially those adepts at handling 

sequential and time-series data, have gained traction in mitigating IoT-specific security risks [9][10].  

 

III. PROPOSED METHODOLOGY 

 

Figure 1 illustrates the innovative procedure within the proposed framework, delineating the entire operational 

process of IDS. Specifically, the devised framework comprises five levels, showcasing uniqueness in the 

following stages: 

 

3.1  Utilized Dataset: 

Developed by IXIA's Perfect Storm in partnership with the UNSW Cyber Range Lab, the UNSW-NB15 dataset 

offers a collection of moderately intense attack simulations and network traffic data. This dataset, which was 

published in 2015 [9], simulates over 2,50,000 packets sent through the network. It encompasses nine attack 

categories (Reconnaissance, Exploits, Shellcode, Backdoors, Worms, DoS (Denial of Service), Fuzzers, 

Generic, Analysis), alongside normal/regular packets. Notably, over 87% of the packets belong to the normal 

type, resulting in a highly imbalanced dataset. A breakdown of packet distribution is provided in Table 1.  

Further information about this dataset can be referenced in [11]. 

 

Table 1. UNSW-NB15 Dataset Packets Distribution 

Category Records 

Count 

Percentage 

Backdoor 2,329 0.10 

Worms 174 0.01 

Reconnaissance 13,987 0.55 

Fuzzers 24,246 0.95 

DoS 16,353 0.64 

Exploits 44,525 1.75 

Analysis 2,677 0.11 

Normal 2,218,761 87.35 

Generic 215,481 8.48 

Shellcode 1,511 0.06 

Total 2,540,044 100 
 

3. 2. Data-Preprocessing 

Data preprocessing entails the collection and manipulation of digital data, altering the values within a specified 

dataset. It involves modifying the information perceived by the observer to enhance the process of acquiring 

information. Generally, datasets display a significant variation in their min and max values. Normalization is 

a crucial step in simplifying algorithms and facilitating effective utilization of data for algorithmic 

classification, particularly within the realm of neural networks [10]. The fundamental approach to 

normalization is data scaling, employing algorithms based on minimum and maximum values. This process 

entails converting data into a specified range, typically within the intervals of (1, 1) or (0, 1). Furthermore, 

prior to normalization, the standardization function is often employed. 



Journal Of Advance Zoology 
 

Available online at: https://jazindia.com    804 

 
 Figure 1. Proposed CNN-LSTM-Based Framework for Intrusion Detection in the IoT Environment 

 

3.3 Learning Component 

The outputs from the CNN and LSTM layers are concatenated to form a comprehensive feature representation. 

This hybrid integration ensures that the model captures both spatial nuances, crucial for recognizing attack 

patterns, and temporal dynamics, vital for discerning evolving threats over time. 

 

 
Figure 2. CNN_LSTM Architecture 

 

CNN-LSTM - Hybrid Model Architecture and Working 

Figure 2 depicts the CNN-LSTM model layers structure architecture. The following are the details of within 

each layer and how input is transformed as it moves through the layers in your CNN-LSTM model: 

 

1. Conv1D Layer: 

Input: The input to the Conv1D layer is a sequence of data with spatial features. 

Operation: The Conv1D layer applies a convolution operation to capture local patterns in the data. It uses a 

set of filters to scan the input sequence. 

 

𝐶𝑜𝑛𝑣(𝑎, 𝑏)  =  ∑(𝑐, 𝑑) (𝐼𝑛𝑝𝑢𝑡(𝑎 +  𝑐, 𝑏 +  𝑑)  ∗  𝐹𝑖𝑙𝑡𝑒𝑟(𝑐, 𝑑))  +  𝐵𝑖𝑎𝑠 

Where 𝑎, 𝑏 represents spatial coordinates within input data and 𝑐, 𝑑 are the relative positions of the filter 

elements. 

𝐵𝑖𝑎𝑠 – Additional degree of freedom or flexibility in modeling. 

 

Output: The Conv1D layer produces a succession of feature maps, each of which reflects the existence of 

certain patterns or features in the input sequence. The number and size of feature maps are determined by the 

no. of filters and the size of kernal. 

 

2. MaxPooling1D Layer: 

Input: The input to the MaxPooling1D layer is the sequence of feature maps generated by the Conv1D layer. 

Operation: By picking the greatest value inside a frame, maxpooling down samples the feature maps. This 

method shrinks the spatial dimension while retaining the most important aspects. 
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𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑖, 𝑗) =  𝑚𝑎𝑥(𝐼𝑛𝑝𝑢𝑡(𝑖, 𝑗), 𝐼𝑛𝑝𝑢𝑡(𝑖 +  1, 𝑗), 𝐼𝑛𝑝𝑢𝑡(𝑖, 𝑗 +  1), 𝐼𝑛𝑝𝑢𝑡(𝑖 +  1, 𝑗 +  1)) 
 

Where 𝑖, 𝑗 represents the spatial coordinates within the data 

 

Output: The down sampled series of feature maps with reduced spatial dimensions produced by the 

MaxPooling1D layer.  

Now this output of MaxPooling1D goes through the LSTM layers, gets computed there and at the end finally 

gives the output.  

 

 
Figure 3. LSTM Structure 

 

3. LSTM Layer: 

Input: The sequence of down sampled feature maps from the MaxPooling1D layer is input to the LSTM layer. 

 

Operation: The LSTM layer uses gates such forget gate, input gate, output gate and memory cells to analyze 

the sequence data and record long-term dependencies. 

Figure 3 shows the LSTM structure. 

For a single time, step (𝑡), the equations are as follows: 

 

i. Forget Gate (𝒇𝒕): 
Whether the previous cell state(𝐶𝑡 − 1) information should be forgotten or not determined by the forget gate. 

 

𝑓𝑡 =  𝜎(𝑊𝑓 ∗  [ℎ𝑡 − 1, 𝑋𝑡]  +  𝑏𝑓) 
𝜎 - sigmoid activation function. 

 

ii. Input Gate (𝒊𝒕): 
What additional information should be added to the cell state is determined by the input gate. 

𝑖𝑡 =  𝜎(𝑊𝑖 ∗  [ℎ𝑡 − 1, 𝑋𝑡]  +  𝑏𝑖) 
𝜎 - sigmoid activation function. 

 

iii. Candidate Cell (𝑪̃ 𝒕): 
The candidate cell state is calculated based on the input data and it gate. 

𝐶 𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑐 ∗  [ℎ𝑡 − 1, 𝑋𝑡]  +  𝑏𝑐) 
where tanh is the hyperbolic tangent activation function. 

 

iv. Cell State (𝑪̃𝒕): 
The cell state from the previous time step (Ct-1) is integrated with the input gate (it), forget gate (ft) and the 

candidate cell state (Ct) outputs to change the present cell state. 

𝐶𝑡 =  𝑓𝑡 ∗  𝐶𝑡 − 1 +  𝑖𝑡 ∗  𝐶 𝑡 
where * represents element-wise multiplication. 

 

v. Output Gate (𝒐𝒕): 
The concealed state is determined by the output gate, which selects what information from the cell state should 

be output. 
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𝑜𝑡 =  𝜎(𝑊𝑜 ∗  [ℎ𝑡 − 1, 𝑋𝑡]  +  𝑏𝑜) 
𝜎 - sigmoid activation function. 

 

vi. Hidden State (𝒉𝒕): 
LSTM layer is the output of Hidden State. 

ℎ𝑡 =  𝑜𝑡 ∗  𝑡𝑎𝑛ℎ(𝐶𝑡) 
where * represents element-wise multiplication. 

 

Output: LSTM layer output is a sequence of hidden states. Each hidden state contains information about the 

data up to that point in the sequence, allowing the model to capture temporal patterns and dependencies. 

 

4. Flatten Layer: 

Input: Flatten layer input is the sequence of hidden states from the LSTM layer. 

 

Operation: The Flatten layer reshapes the 3D tensor into a 1D vector. This operation prepares the data for the 

final fully connected layer. 

 

Output: Flatten layer output is a 1D vector that may be viewed as a feature vector that summarizes the 

temporal data gathered from the LSTM layer. 

 

5. Dense (Fully Connected) Layer: 

Input: The input to  Dense layer is 1D vector obtained from the Flatten layer. 

 

Operation: The Dense layer computes the input attributes weighted sum, applies a function for activation (for  

example, softmax for multi-class classification), and generates the final output. 

 

i. Weighted Sum (𝒛): 
This is the total of the weighted inputs plus a bias term. 

𝑧 =  ∑(𝑖) (𝑊𝑖 ∗  𝑥𝑖)  +  𝑏 

where b is the bias, 𝑊𝑖 are the weights and xi are the inputs. 

 

ii. Activation Function (𝒂): 
The model is introduced non-linearity by the activation function. 

𝑎 =  𝑓(𝑧) 
where activation function is f (e.g., Relu, sigmoid, softmax, etc.). 

 

Output: The Dense layer produces either a list of class probabilities (for categorization activities) or a 

continuous value (for regression operations). Each element in the output vector represents a classification or 

regression prediction. 

 

The Flatten Layer and Dense Layer combine together to the give the output layer. In summary, the Conv1D 

layer extracts spatial features, the MaxPooling1D layer down samples the features, the LSTM layer models 

temporal dependencies, the Flatten layer prepares data for the last layer, and Dense layer provides the end 

predictions. The input data undergoes a series of transformations, capturing spatial and temporal patterns, 

before producing the model's output. 

 

3. 4. Real-World Applicability 
a.  Raspberry Pi as a Simulation Platform for IoT: 

The choice of Raspberry Pi as a simulation platform stems from its characteristics as a cost-effective, low-

power, and versatile single-board computer. In the context of IoT, where devices often operate with resource 

constraints, Raspberry Pi serves as an apt representation. Its emulation of limited computational resources 

allows us to gauge the adaptability of the intrusion detection model to the conditions commonly encountered 

by IoT devices. 

 

b.  IoT-Specific Validation: 

The deployment of the intrusion detection model on Raspberry Pi goes beyond mere simulation; it aims to 

validate the model's real-world performance, resource - constrained IoT situations. This real-world 
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applicability assessment is crucial for ensuring the effectiveness of the model in practical IoT environments. 

By testing the model on Raspberry Pi, we can observe its behavior and efficiency in detecting network 

intrusions under conditions representative of typical IoT deployments. 

 

3. 5.  Alert Mechanisms 

a.  Integration of Twilio for Real-Time SMS Alerts: 

In enhancing the real-world responsiveness of our intrusion detection system, we have integrated Twilio, a 

cloud communications platform, to facilitate real-time SMS alerts. This addition ensures that administrators 

receive immediate notifications on their mobile devices, allowing for swift responses to potential security 

threats. Twilio's reliability and speed in delivering SMS alerts contribute to the overall effectiveness of our 

alert mechanism. 

 

b.  Use of SMTP for Email Notifications: 

Complementing the SMS alerts, our system is equipped with an email notification mechanism using the Simple 

Mail Transfer Protocol (SMTP). This dual-alert system ensures comprehensive coverage, as administrators are 

notified through both SMS and email channels. Email notifications provide a detailed account of the detected 

intrusion, enabling administrators to assess the situation more thoroughly and take informed actions. 

 

c.  Significance of Alert Mechanisms: 

The integration of robust alert mechanisms is paramount in fortifying the intrusion detection system's real-

world effectiveness. Timely alerts empower administrators to respond promptly to potential security threats, 

mitigating risks and minimizing the impact of intrusions. The combination of SMS and email notifications 

offers a multi-faceted approach, ensuring that relevant parties are informed through channels that best suit their 

accessibility and response requirements. 

 

IV. EVALUATION METRICS AND RESULTS 

 

We give a complete evaluation of the CNN-LSTM Hybrid model's performance in intrusion detection 

alongside CNN and LSTM in this section. The models were rigorously tested and validated, with the findings 

described in Tables 2,3,4. 

 

Table 2. The CNN model produced the following results 

Metrics Binary Classification Multi-Class Classification 

Training Accuracy 90.34% 90.34% 

Validation Accuracy 90.04% 90.07% 

Test Accuracy 90.06% 90.06% 

Training Loss 12.72% 12.78% 

Validation Loss 12.73%. 12.79% 

Test Loss 8.31% 8.35% 

 

Table 3. The LSTM model produced the following results 
Metrics Binary Classification Multi-Class Classification 

Training Accuracy 91.21% 91.01% 

Validation Accuracy 91.50% 91.20% 

Test Accuracy 91.15% 91.13% 

Training Loss 11.63% 11.63% 

Validation Loss 11.72% 11.72% 

Test Loss 6.41% 6.41% 

 

Table 4. The CNN-LSTM Model produced the following results 
Metrics Binary Classification Multi-Class Classification 

Training Accuracy 98.4% 98.23% 

Validation Accuracy 98.14% 98.45% 

Test Accuracy 98.23% 98.09% 

Training Loss 3.24% 3.65% 

Validation Loss 3.5% 3.23% 

Test Loss 3.67% 3.37% 
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The CNN-LSTM hybrid model outperforms both the LSTM and CNN models, marking a significant 

advancement in intrusion detection capabilities. The comprehensive evaluation of performance metrics 

unequivocally underscores the effectiveness of the CNN-LSTM Hybrid model in accurately identifying and 

classifying network intrusions. Exceptionally high training, validation, and test accuracies, each surpassing 

98%, underscore capacity of the model to discern complex structures and anomalies within the network data. 

Furthermore, the consistently low training and validation losses signify the robust learning and generalization 

abilities of the CNN-LSTM Hybrid model. This characteristic is particularly crucial in intrusion detection 

scenarios where the model's capacity to adapt to diverse and evolving threats is paramount. The hybrid 

architecture, leveraging both convolutional and sequential learning, enables the model to get temporal and 

spatial dependencies concurrently, contributing to its superior performance. In conclusion, the CNN-LSTM 

Hybrid model not only achieves exceptional accuracy in both multi-class and binary classifications but also 

exhibits resilience and adaptability across various datasets. These findings position the CNN-LSTM Hybrid 

model as a formidable solution for bolstering IoT network security, offering a nuanced and effective approach 

to intrusion detection in dynamic and complex environments. 

 

Intrusion Detection Alerts: 

To validate the real-world applicability of our intrusion detection system, we implemented alert mechanisms 

using Python modules. When an intrusion is detected, alerts are promptly sent to the relevant personnel through 

both SMS and email channels. 

 

SMS Alert: 

The SMS alert provides a concise notification about the intrusion, including the type of intrusion, time of 

detection, source, and destination IP addresses. 

 

 
Figure 4. SMS Alert for Intrusion Detection 

 

Email Alert:Simultaneously, an email alert is dispatched with detailed information about the intrusion as 

showing in figure 5. The email includes specifics such as the intrusion type, timestamp, source, and destination 

IP addresses. This comprehensive alert mechanism ensures that the responsible parties are informed promptly, 

allowing for immediate investigation and mitigation of potential security threats. 
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Figure 5. Email Alert for Intrusion Detection 
 

These alert mechanisms, integrated into the CNN-LSTM Hybrid model, not only demonstrate its effectiveness 

in intrusion detection but also emphasize its practical utility in real-world scenarios, contributing to the 

enhancement of IoT network security. 

 

V. CONCLUSION 

 

In conclusion, the proposed CNN-LSTM Hybrid model emerges as a formidable intrusion detection system, 

demonstrating exceptional accuracy in detecting malicious activities within IoT environments. Trained on the 

UNSW-NB15 dataset, the model exhibited classification rates exceeding 98% in both multi-class and binary 

classifications. The real-world applicability of the model was validated through testing on Raspberry Pi, 

showcasing its effectiveness in practical IoT scenarios. The integration of alert mechanisms, utilizing Python 

modules Twilio for SMS and SMTP for email notifications, enhances the system's responsiveness to potential 

threats. As we look ahead, future work involves fortifying the model's robustness through synthetic data 

generation and integrating advanced deep learning techniques for even greater accuracy. Feature selection 

methods will be explored to refine the intrusion detection system, ensuring optimal performance across diverse 

datasets. The ultimate goal is real-world deployment, collaborating with industry partners for widespread 

adoption, and contributing to a safer and more secure IoT landscape. The journey continues towards enhancing 

the sophistication and intrusion detection systems reliability in the ever-evolving landscape of cybersecurity. 
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