

Journal of Advanced Zoology

ISSN: 0253-7214 Volume **44** Issue **58 Year 2023** Page **372-376**

Crossing Numbers of the Cartesian Product of the Double Triangular Snake Graphs With Path P_m.

Pathak Manojkumar Vijaynath^{1*}, Dr. Nithya Sai Narayana²

 ^{1*}VPM'S Kannada high school and Junior college, Mithagar road, Mulund(E), Mumbai-81. manojkumarpathak82v@gmail.com
²Department of Mathematics, University of Mumbai, Vidyanagari Kalina Santacruz East Mumbai-400098. narayana nithya@yahoo.com

*Corresponding Author: Pathak Manojkumar Vijaynath

*VPM'S Kannada high school and Junior college, Mithagar road, Mulund(E), Mumbai-81. manojkumarpathak82v@gmail.com

	Abstract
	The crossing number Cr(G) of a graph G is the least number of edge crossings in all possible good drawings of G in the plane. Join and Cartesian products of graphs have many interesting graph-theoretical properties. In this paper, we evaluate the crossing number of the Cartesian product of double triangular snake graph DT_2 with the path P_m . In this paper, we proved $Cr(DT_2 \times P_m) = 6(m - 2)$, form ≥ 2 where Cr denotes the crossing number.
	Keywords: Crossing number, Cartesian product, Join product, Double triangular snake graph, Path, cycle.
CC License	
CC-BY-NC-SA 4.0	Mathematics Subject Classification (2010): 68R10; 05C10; 05C62

Introduction

The crossing number of a graph G is the least possible number of edge crossings in any drawing of G in the plane. It is denoted by Cr(G). A drawing of a graph is good if every two edges have at most one point in common, which is either a common end vertex or a crossing. We denote the number of crossings of a graph G in a drawing τ in the plane by Cr(G). For two subgraphs H and H' of G such that $E(H) \cap E(H') \models \phi$, $Cr_{\tau}(H, H')$ denotes the edge crossings between E(H) and E(H') in the drawing τ . The union of the two graphs F and K, denoted by $F \cup K$ and it is the graph with vertex set $V(F) \cup (K)$ and edge set $E(F) \cup E(K)$. The join of the two graphs F and K, denoted by F + K, is the graph obtained from $F \cup K$ by joining every vertex of F to every vertex of K.

The Cartesian product of the two graphs *F* and *K*, denoted by $F \times K$, is the graph whose vertex set is $V(F) \times V(K)$ and the edges are of the form (a, b)(m, n) where either a = m and $bn \in E(K)$ or b = n and $am \in E(F)$.

Let P_m denote the path on m vertices of length (m-1). There are few results with $Cr(G \times P_m)$, where G is a graph on 7 vertices. Finding the value of $Cr(G \times P_m)$ has been investigated in [1], [2], [3], [5], [6], [7], [8], [9], [10]. In this paper, we evaluated the exact value of $Cr(DT_2 \times P_m)$ for $m \ge 2$.

Definition 2.1. (Double Triangular Snake graph DT_p) A graph DT_p with p blocks is obtained from a path on vertices α_0 , α_1 , α_2 , α_p and by joining α_i and α_{i+1} to two new vertices α_{p+1+i} and α_{2p+1+i} for i = 0, 1, 2, ..., p-1

Figure 1: (Double Triangular snake with 5 blocks)

Drawing of $DT_2 \times P_m$:

For $m \ge 2$, Graph $DT_2 \times P_m$ has 7m vertices and (17m - 7) edges that are the edges in the m copies of graph DT_2 and in the 7 paths of m vertices.

Notation:

(1) $(DT_2)^i$: ith copy of Double Triangular Snake graph DT_2 .

(2) $(E_2)^i$: Edges which join vertices of $(i + 1)^{th}$ copy of Double Tri- angular Snake graph DT_2 with corresponding vertices of i^{th} copy of the graph DT_2 .

(3)

Figure 2: $(DT_2 \times P_m)$

Remark 2.1. $Cr(DT_2 \times P_2) = 0$.

Figure 3: $(DT_2 \times P_2)$

Lemma 2.1. Let $Z(n,m) = \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m-1}{2} \right\rfloor$

(i) $Cr(K_{n,m})=Z(n,m)$ where $min\{m, n\} \le 6$,.

(ii) $Cr(K_{n,m}) \leq Z(n,m)$ for $m, n \in N$.

Theorem 2.1. $Cr_{\tau} (DT_2 + 2K_1) = 6.$

Proof. $DT_2 + K_1$ is planar. Consider a good drawing of the graph $DT_2 + 2K_1$ given in **fig. 4**.

From fig. 4 we can conclude that,

 $\operatorname{Cr}_{\tau}(\operatorname{DT}_2 + 2\operatorname{K}_1) \leq 6$

(1)

Let us prove the otherway inequality. Any drawing τ of the graph $DT_2 + 2K_1$ contains a sub drawing of $K_{3,6}$. Thus $Cr_{\tau}(DT_2 + 2K_1) \ge Cr_{\tau}(K_{6,3}) = 6$.

 $\operatorname{Cr}_{\tau}(\mathrm{DT}_2 + 2\mathrm{K}_1) \ge 6 \tag{2}$

form eq. (1) and eq. (2), we can conclude that, $Cr_{\tau}(DT_2 + 2K_1) = 6$

Lemma 2.2. For any good drawing of the graph $DT_2 \times P_2$, let y be a vertex such that $y \notin V(DT_2)$ and graph S obtained by joining all vertices of one copy of the graph DT_2 with the vertex y then $Cr_{\tau}1$ (S) =6. Proof. Consider a good drawing of the graph S, as shown in **fig. 5**.

Figure 5: ((Drawing of the graph S)

Thus from **fig. 5** we can conclude that,

 $Cr_{\tau_1}(S) \leq 6$.

Now we have to prove other way inequality. By contracting all vertices and edges of another copy of the graph DT_2 in any drawing τ_1 of graph S, we get a contraction of subdrawing of the graph $DT_2 + 2K_1$. Thus, $Cr_{\tau_1}(S) \ge Cr_{\tau_1}(DT_2 + 2K_1) = 6$.

 $Cr_{\tau_1}(S) \ge 6$. Hence proved.

Theorem 2.2. $Cr_{\tau}(DT_2 \times P_3) = 6$. Proof. Consider a good drawing of the graph $DT_2 \times P_3$ as shown in **fig. 6**.

Figure 6: (DT₂ × P₃)

Thus from **fig. 6** we can conclude that, $Cr_{\tau}(DT_2 \times P_3) \leq 6$ Now we have to prove otherway inequality. By contracting all vertices and edges of 3^{rd} copy of the graph DT_2 in any drawing τ of the graph $DT_2 \times P_3$, we get a contraction of the graph S. Thus, $Cr_{\tau}(DT_2 \times P_3) \geq Cr_{\tau}(S) = 6$ $Cr_{\tau}(DT_2 \times P_3) \geq 6$. Hence proved.

Theorem 2.3. $Cr_{\tau} (DT_2 \times P_m) = 6(m - 2)$, for $m \ge 2$.

Proof. We prove this by the method of induction on m. By **theorem 2.2** result holds for m=3. Let us assume the result holds for less than m. Now we have to prove the result for m. In any good drawing τ of the graph $DT_2 \times P_m$, by Contracting all vertices and edges of nth copy of the graph DT_2 . We get a drawing of a disjoint union of subgraphs $DT_2 \times P_{m-1}$ and S. Thus

 $\begin{array}{l} Cr_{\tau}\left(DT_{2}\times P_{m}\right)\geq Cr_{\tau}(DT_{2}\times P_{m-1})+Cr_{\tau}(S)=6(m-3)+6=6(m-2)\\ Cr_{\tau}(DT_{2}\times P_{m})\geq 6(m-2)\\ \text{and from the drawing of the graph }DT_{2}\times P_{m} \text{ shown in fig. 2, we can conclude that,}\\ Cr_{\tau}(DT_{2}\times P_{m})\leq 6(m-2)\\ \text{Hence proved.} \end{array}$

2 Conclusion

In this paper, we obtained the exact crossing number of the Cartesian product of double triangular snake graph DT_2 with P_m .

3Acknowledgment

I express my sincere gratitude to my guide Dr. Nithya Sai Narayana for her valuable guidance. I am also thankful to the Mathematics department, the University of Mumbai for selecting me as a researcher in this subject. My sincere thanks also go to my college for their support. I also thank the Editorial Board of this journal for publishing my work.

4Funding

Not applicable

5 Data availability statement

Data sharing is not applicable to this article as no datasets were gen- erated or analyzed during the current study.

6Declarations

This declaration is not applicable.

7 Conflict of interest

There is no any conflict of interest.

References

- 1. Bokal, D. On the crossing numbers of Cartesian products with paths. Journal of Combinatorial Theory, Series B 97, 3(2007),381–384.
- 2. Klesc, M." The crossing numbers of products of paths and stars with 4-vertex graphs." Journal of Graph Theory 18, 6(1994), 605–614.
- 3. Klesc, M." The crossing numbers of cartesian products of paths with 5-vertex graphs". Discrete Mathematics 233,1-3 (2001),353–359.
- 4. Maria'n Kles'c' and stefan Schro"tter," THE CROSSING NUMBERS OF JOIN PRODUCTS OF PATHS WITH GRAPHS OF ORDERFOUR". Discussiones Mathematicae Graph Theory 31(2)(2011) 321-331.
- 5. Ouyang, Z., Wang, J., and Huang, Y. The crossing number of the Cartesian product of paths with complete graphs. Discrete Mathe- matics 328 (2014), 71–78.
- 6. Pathak Manojkumar Vijaynath and Dr. Nithya Sai Narayana" On the Crossing numbers of $TS_n \times P_m$ and $TS_n \times C_m$." Journal of Com- putational Mathematica (2023), 2456-8686.
- 7. Peng, Y., and Yiew, Y. The crossing number of $p(3, 1) \times P_n$. Dis- crete mathematics 306, 16 (2006), 1941–1946.
- 8. Yiew, Y. C., Chia, G. L., and Ong, P.-H. Crossing number of the Cartesian product of prism and path. AKCE International Journal of Graphs and Combinatorics 0, 0 (2020), 1–7.
- 9. Yuan, Z., and Huang, Y. The crossing number of petersen graph P (4, 1) with paths P_n. Oper. Res. Trans 15, 3 (2011), 95–106.
- 10. Zheng, W., Lin, X., and Yang, Y. The crossing number of $K_{2,m} \times P_n$, Discrete Mathematics 308, 24 (2008), 6639–6644.