# Crossing Numbers of the Cartesian Product of the Double Triangular Snake Graphs With Path $\mathbf{P}_{\mathrm{m}}$. 

Pathak Manojkumar Vijaynath ${ }^{1 *}$, Dr. Nithya Sai Narayana ${ }^{2}$<br>${ }^{\text {I* }}$ VPM'S Kannada high school and Junior college, Mithagar road, Mulund(E), Mumbai-81. manojkumarpathak82v@gmail.com<br>${ }^{2}$ Department of Mathematics, University of Mumbai, Vidyanagari Kalina Santacruz East Mumbai-400098. narayaña nithya@yahoo.com<br>*Corresponding Author: Pathak Manojkumar Vijaynath<br>*VPM'S Kannada high school and Junior college, Mithagar road, Mulund(E), Mumbai-81. manojkumarpathak82v@gmail.com

|  | Abstract |
| :--- | :--- |
|  | $\begin{array}{l}\text { The crossing number } \mathrm{Cr}(\mathrm{G}) \text { of a graph } \mathrm{G} \text { is the least number of edge } \\ \text { crossings in all possible good drawings of } \mathrm{G} \text { in the plane. Join and } \\ \text { Cartesian products of graphs have many interesting graph-theoretical } \\ \text { properties. In this paper, we evaluate the crossing number of the }\end{array}$ |
| Cartesian product of double triangular snake graph $\mathrm{DT}_{2}$ with the path $\mathrm{P}_{\mathrm{m}}$. |  |
| In this paper, we proved $\mathrm{Cr}\left(\mathrm{DT}_{2} \times \mathrm{P}_{\mathrm{m}}\right)=6(\mathrm{~m}-2)$, form $\geq 2$ where Cr |  |
| denotes the crossing number. |  |$\}$| Keywords: Crossing number, Cartesian product, Join product, Double |
| :--- |
| triangular snake graph, Path, cycle. |

## Introduction

The crossing number of a graph $G$ is the least possible number of edge crossings in any drawing of $G$ in the plane. It is denoted by $\operatorname{Cr}(G)$. A drawing of a graph is good if every two edges have at most one point in common, which is either a common end vertex or a crossing. We denote the number of crossings of a graph G in a drawing $\tau$ in the plane by $C r(G)$. For two subgraphs $H$ and $H^{\prime}$ of G such that $E(H) \cap E\left(H^{\prime}\right)=\phi$, $C r_{\tau}\left(H, H^{\prime}\right)$ denotes the edge crossings between $\mathrm{E}(\mathrm{H})$ and $\mathrm{E}\left(\mathrm{H}^{\prime}\right)$ in the drawing $\tau$. The union of the two graphs $F$ and $K$, denoted by $F \cup K$ and it is the graph with vertex set $V(F) \cup(K)$ and edge set $E(F) \cup E(K)$. The join of the two graphs $F$ and $K$, denoted by $F+K$, is the graph obtained from $F \cup K$ by joining every vertex of $F$ to every vertex of $K$.
The Cartesian product of the two graphs $F$ and $K$, denoted by $F \times K$, is the graph whose vertex set is $V(F) \times$ $V(K)$ and the edges are of the form $(a, b)(m, n)$ where either $a=m$ and $b n \in E(K)$ or $b=n$ and $a m \in E(F)$.
Let $P_{m}$ denote the path on $m$ vertices of length (m-1). There are few results with $\operatorname{Cr}\left(G \times P_{m}\right)$, where G is a graph on 7 vertices. Finding the value of $C r\left(G \times P_{m}\right)$ has been investigated in [1], [2], [3], [5], [6], [7], [8], [9], [10]. In this paper, we evaluated the exact value of $\operatorname{Cr}\left(D T_{2} \times P_{m}\right)$ for $m \geq 2$.

Definition 2.1. (Double Triangular Snake graph $\mathrm{DT}_{\mathrm{p}}$ ) A graph $\mathrm{DT}_{\mathrm{p}}$ with p blocks is obtained from a path on vertices $\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{p}$ and by joining $\alpha_{i}$ and $\alpha_{i+1}$ to two new vertices $\alpha_{p+1+i}$ and $\alpha_{2 p+1+i}$ for $i=0,1,2, \ldots . .$. , p-


Figure 1: (Double Triangular snake with 5 blocks)
Drawing of $\mathrm{DT}_{2} \times \mathrm{P}_{\mathrm{m}}$ :
For $\mathrm{m} \geq 2$, Graph $\mathrm{DT}_{2} \times \mathrm{P}_{\mathrm{m}}$ has 7 m vertices and $(17 \mathrm{~m}-7)$ edges that are the edges in the m copies of graph $\mathrm{DT}_{2}$ and in the 7 paths of m vertices.

## Notation:

(1) $\left(\mathrm{DT}_{2}\right)^{\mathrm{i}}: \mathrm{i}^{\text {th }}$ copy of Double Triangular Snake graph $\mathrm{DT}_{2}$.
(2) $\left(\mathrm{E}_{2}\right)^{\mathrm{i}}$ : Edges which join vertices of $(\mathrm{i}+1)^{\text {th }}$ copy of Double Tri- angular Snake graph $\mathrm{DT}_{2}$ with corresponding vertices of $\mathrm{i}^{\text {th }}$ copy of the graph $\mathrm{DT}_{2}$.
(3)


Figure 2: $\left(\mathrm{DT}_{2} \times \mathrm{P}_{\mathrm{m}}\right)$
Remark 2.1. $\mathrm{Cr}\left(\mathrm{DT}_{2} \times \mathrm{P}_{2}\right)=0$.


Figure 3: $\left(\mathrm{DT}_{2} \times \mathrm{P}_{2}\right)$

Lemma 2.1. Let $\left.Z(n, m)=\left\lfloor\frac{n}{2}\right\rfloor \cdot \frac{n-1}{2}\right\rfloor \cdot\left\lfloor\frac{m}{2}\right\rfloor \cdot\left\lfloor\frac{m-1}{2}\right\rfloor$
(i) $\operatorname{Cr}\left(\mathrm{K}_{\mathrm{n}, \mathrm{m}}\right)=\mathrm{Z}(\mathrm{n}, \mathrm{m})$ where $\min \{\mathrm{m}, \mathrm{n}\} \leq 6$,
(ii) $\operatorname{Cr}\left(\mathrm{K}_{\mathrm{n}, \mathrm{m}}\right) \leq \mathrm{Z}(\mathrm{n}, \mathrm{m})$ for $\mathrm{m}, \mathrm{n} \in \mathrm{N}$.

Theorem 2.1. $\mathrm{Cr}_{\tau}\left(\mathrm{DT}_{2}+2 \mathrm{~K}_{1}\right)=6$.
Proof. $\mathrm{DT}_{2}+\mathrm{K}_{1}$ is planar. Consider a good drawing of the graph $\mathrm{DT}_{2}+2 \mathrm{~K}_{1}$ given in fig. 4.


Figure 4: $\left(\mathrm{DT}_{2}+2 \mathrm{~K}_{1}\right)$
From fig. 4 we can conclude that,
$\mathrm{Cr}_{\mathrm{t}}\left(\mathrm{DT}_{2}+2 \mathrm{~K}_{1}\right) \leq 6$
Let us prove the otherway inequality.
Any drawing $\tau$ of the graph $\mathrm{DT}_{2}+2 \mathrm{~K}_{1}$ contains a sub drawing of $\mathrm{K}_{3,6}$. Thus $\mathrm{Cr}_{\tau}\left(\mathrm{DT}_{2}+2 \mathrm{~K}_{1}\right) \geq \mathrm{Cr}_{\tau}\left(\mathrm{K}_{6,3}\right)=6$.
$\mathrm{Cr}_{\mathrm{r}}\left(\mathrm{DT}_{2}+2 \mathrm{~K}_{1}\right) \geq 6$
form eq. (1) and eq. (2), we can conclude that,
$\mathrm{Cr}_{7}\left(\mathrm{DT}_{2}+2 \mathrm{~K}_{1}\right)=6$
Lemma 2.2. For any good drawing of the graph $\mathrm{DT}_{2} \times \mathrm{P}_{2}$, let y be a vertex such that $y \notin V\left(D T_{2}\right)$ and graph S obtained by joining all vertices of one copy of the graph $\mathrm{DT}_{2}$ with the vertex y then $\mathrm{Cr}_{\mathrm{T}} 1(\mathrm{~S})=6$.
Proof. Consider a good drawing of the graph S, as shown in fig. 5.


Figure 5: ((Drawing of the graph S)
Thus from fig. 5 we can conclude that, $C r_{\tau_{1}}(S) \leq 6$.
Now we have to prove other way inequality. By contracting all vertices and edges of another copy of the graph $\mathrm{DT}_{2}$ in any drawing $\tau_{1}$ of graph S , we get a contraction of subdrawing of the graph $\mathrm{DT}_{2}+2 \mathrm{~K}_{1}$. Thus, $C r_{\tau_{1}}(S) \geq C r_{\tau_{1}}\left(D T_{2}+2 K_{1}\right)=6$.
$C r_{\tau_{1}}(S) \geq 6$. Hence proved.

Theorem 2.2. $\mathrm{Cr}_{t}\left(\mathrm{DT}_{2} \times \mathrm{P}_{3}\right)=6$.
Proof. Consider a good drawing of the graph $\mathrm{DT}_{2} \times \mathrm{P}_{3}$ as shown in fig. 6.


Figure 6: $\left(\mathrm{DT}_{2} \times \mathrm{P}_{3}\right)$
Thus from fig. 6 we can conclude that,
$\mathrm{Cr}_{\tau}\left(\mathrm{DT}_{2} \times \mathrm{P}_{3}\right) \leq 6$
Now we have to prove otherway inequality. By contracting all vertices and edges of $3^{\text {rd }}$ copy of the graph $\mathrm{DT}_{2}$ in any drawing $\tau$ of the graph $\mathrm{DT}_{2} \times \mathrm{P}_{3}$, we get a contraction of the graph S . Thus,
$\mathrm{Cr}_{\tau}\left(\mathrm{DT}_{2} \times \mathrm{P}_{3}\right) \geq \mathrm{Cr}_{\tau}(\mathrm{S})=6$
$\mathrm{Cr}_{\tau}\left(\mathrm{DT}_{2} \times \mathrm{P}_{3}\right) \geq 6$.
Hence proved.
Theorem 2.3. $\mathrm{Cr}_{\tau}\left(\mathrm{DT}_{2} \times \mathrm{P}_{\mathrm{m}}\right)=6(\mathrm{~m}-2)$, for $\mathrm{m} \geq 2$.
Proof. We prove this by the method of induction on m . By theorem $\mathbf{2 . 2}$ result holds for $\mathrm{m}=3$. Let us assume the result holds for less than m . Now we have to prove the result for m . In any good drawing $\tau$ of the graph $\mathrm{DT}_{2} \times \mathrm{P}_{\mathrm{m}}$, by Contracting all vertices and edges of $\mathrm{n}^{\text {th }}$ copy of the graph $\mathrm{DT}_{2}$. We get a drawing of a disjoint union of subgraphs $\mathrm{DT}_{2} \times \mathrm{P}_{\mathrm{m}-1}$ and S . Thus
$\mathrm{Cr}_{\tau}\left(\mathrm{DT}_{2} \times \mathrm{P}_{\mathrm{m}}\right) \geq \mathrm{Cr}_{\tau}\left(\mathrm{DT}_{2} \times \mathrm{P}_{\mathrm{m}-1}\right)+\mathrm{Cr}_{\tau}(\mathrm{S})=6(\mathrm{~m}-3)+6=6(\mathrm{~m}-2)$
$\mathrm{Cr}_{\mathrm{t}}\left(\mathrm{DT}_{2} \times \mathrm{P}_{\mathrm{m}}\right) \geq 6(\mathrm{~m}-2)$
and from the drawing of the graph $\mathrm{DT}_{2} \times \mathrm{P}_{\mathrm{m}}$ shown in fig. 2 , we can conclude that,
$\mathrm{Cr}_{\mathrm{t}}\left(\mathrm{DT}_{2} \times \mathrm{P}_{\mathrm{m}}\right) \leq 6(\mathrm{~m}-2)$
Hence proved.

## 2 Conclusion

In this paper, we obtained the exact crossing number of the Cartesian product of double triangular snake graph $\mathrm{DT}_{2}$ with $\mathrm{P}_{\mathrm{m}}$.

## 3Acknowledgment

I express my sincere gratitude to my guide Dr. Nithya Sai Narayana for her valuable guidance. I am also thankful to the Mathematics department, the University of Mumbai for selecting me as a researcher in this subject. My sincere thanks also go to my college for their support. I also thank the Editorial Board of this journal for publishing my work.

## 4Funding

Not applicable

## 5Data availability statement

Data sharing is not applicable to this article as no datasets were gen- erated or analyzed during the current study.

## 6Declarations

This declaration is not applicable.

## 7 Conflict of interest

There is no any conflict of interest.

## References

1. Bokal, D. On the crossing numbers of Cartesian products with paths. Journal of Combinatorial Theory, Series B 97, 3(2007),381-384.
2. Klesc, M." The crossing numbers of products of paths and stars with 4-vertex graphs." Journal of Graph Theory 18, 6(1994), 605-614.
3. Klesc, M." The crossing numbers of cartesian products of paths with 5 -vertex graphs". Discrete Mathematics 233,1-3 (2001),353-359.
4. Maria'n Kles č ${ }^{`}$ and stefan Schro"tter," THE CROSSING NUMBERS OF JOIN PRODUCTS OF PATHS WITH GRAPHS OF ORDERFOUR". Discussiones Mathematicae Graph Theory 31(2)(2011) 321-331.
5. Ouyang, Z., Wang, J., and Huang, Y. The crossing number of the Cartesian product of paths with complete graphs. Discrete Mathe- matics 328 (2014), 71-78.
6. Pathak Manojkumar Vijaynath and Dr. Nithya Sai Narayana" On the Crossing numbers of $\mathrm{TS}_{\mathrm{n}} \times \mathrm{P}_{\mathrm{m}}$ and $\mathrm{TS}_{\mathrm{n}} \times \mathrm{C}_{\mathrm{m}}$." Journal of Com- putational Mathematica (2023), 2456-8686.
7. Peng, Y., and Yiew, Y. The crossing number of $p(3,1) \times P_{n}$. Dis- crete mathematics 306, 16 (2006), 1941-1946.
8. Yiew, Y. C., Chia, G. L., and Ong, P.-H. Crossing number of the Cartesian product of prism and path. AKCE International Journal of Graphs and Combinatorics 0,0 (2020), 1-7.
9. Yuan, Z., and Huang, Y. The crossing number of petersen graph $P(4,1)$ with paths $P_{n}$. Oper. Res. Trans 15, 3 (2011), 95-106.
10. Zheng, W., Lin, X., and Yang, Y. The crossing number of $K_{2, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}$, Discrete Mathematics 308, 24 (2008), 6639-6644.
