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Abstract  

 
Axial flow fan is a mechanical fan that generates airflow in the same direction as its 

rotational axis. These fans find widespread use in various applications, including 

ventilation, cooling, and air circulation across industrial, commercial, and 

residential settings. However, designing these fans can be challenging in the fan 

manufacturing industry due to the need to accommodate diverse operating conditions. 

This complexity arises from the fact that multiple design parameters significantly 

influence fan performance, requiring careful consideration and optimization to 

ensure efficient operation across various scenarios. In this paper, we present a 

technique for monitoring and maintenance of axial flow fans using hybrid optimal 

deep learning with IoT system. Our method leverages the pre-trained U-Net 

architecture to extract hidden features effectively from the dataset. Furthermore, we 

introduce an improved triple tree-seed optimization (IT2SO) algorithm for feature 

optimization, which identifies the most optimal features among the extracted ones. To 

make informed decisions about axial flow fan process monitoring, we propose the 

deep boosted hybrid learning (DBHL) technique as the decision model to maintain 

the proper operation. To validate the effectiveness of proposed IT2SO+DBHL 

technique, we have conducted experiments using the air movement and control 

association international (AMCA) dataset. The results demonstrate the superior 

performance of our monitoring approach compared to existing techniques across 

various evaluation measures. 

Keywords: Axial flow fan, Feature extraction, Feature optimization, Process 

monitoring, Fan manufacturing 

1. Introduction 
The fan manufacturing industry [1] encompasses the production of various types of fans designed for 

diverse applications, including cooling, ventilation, exhaust, and more. One common type of fan within 

this industry is the axial flow fan, also known as a propeller fan. Axial flow fans [2][3] move air or gas 

parallel to their axis of rotation, with blades resembling aircraft or boat propellers. They are highly 

efficient at generating a large volume of airflow at relatively low pressure, making them suitable for 

cooling electronic equipment, providing building ventilation, and cooling radiators in vehicles. These 

fans vary in size from small desktop versions to massive industrial ones used in power plants [4]. 

Depending on their design and speed, they can produce varying levels of noise, with quieter versions 

used in noise-sensitive environments. Axial flow fans come in different types, such as tube-axial fans, 

vane-axial fans, and propeller fans, catering to specific airflow requirements and industry needs [5]. 

Overall, the fan manufacturing industry plays a pivotal role in providing air movement and ventilation 

solutions across a wide range of sectors. 

A monitoring and maintenance system for axial flow fans comprises a comprehensive set of practices 

and tools designed to ensure the dependable and efficient operation of these fans while promptly 

identifying and addressing potential issues or failures [6]. This system is vital for a wide range of 
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applications utilizing axial flow fans, including industrial facilities, HVAC systems, and power plants 

[7]. The system typically includes routine visual inspections to detect visible signs of wear and damage 

on fan components, such as blades, motors, and housings. Additionally, vibration sensors are often 

employed to monitor fan vibrations, with unusual or excessive vibrations serving as indicators of 

mechanical problems, imbalances or misalignments [8]. Temperature sensors may also be in use to keep 

tabs on motor and bearing temperatures, with elevated temperatures signaling potential issues like 

overheating or insufficient lubrication. Monitoring airflow and noise levels are other essential aspects 

of this system, helping identify performance deviations or abnormal noise that could hint at underlying 

fan problems [9]. Condition-based maintenance strategies are a crucial element, leveraging data from 

sensors and inspections to schedule maintenance based on the actual condition of the fan rather than 

predetermined time intervals, thus optimizing maintenance efficiency. Bearing-equipped fans require a 

well-maintained lubrication schedule to prevent bearing failure and fan malfunctions. Regular cleaning 

of fan blades and surrounding areas is also fundamental to prevent dirt and debris buildup, which can 

reduce efficiency and increase wear [10].  

Alignment and balancing checks are performed periodically to ensure that the fan operates correctly, 

preventing issues like misalignment or imbalance that may lead to excessive wear and vibrations. Data 

from monitoring sensors is logged and analyzed over time, enabling the detection of trends or patterns 

indicative of impending problems. Some systems may also utilize advanced predictive maintenance 

techniques to forecast maintenance needs. Additionally, protocols for emergency shutdown procedures 

are established to safely halt fan operation in the event of critical failures or emergencies, safeguarding 

against further damage or risks to personnel. Overall, the design a monitoring and maintenance system 

for axial flow fans ensures equipment longevity, minimal downtime, enhanced energy efficiency, and 

improved operational reliability, tailored to the specific needs and importance of the fan within its 

application [11][12]. 

Deep learning [13]-[20] can play a significant role in enhancing the monitoring and maintenance system 

for axial flow fans. The deep neural networks (DNNs) [13] or convolutional neural networks (CNNs) 

[14] can be trained on historical data from the axial flow fan's operation. These models can learn to 

recognize normal operating patterns and detect anomalies in real-time. Unusual vibrations, temperature 

spikes, or airflow deviations that may not be immediately apparent to human operators can be flagged 

by the deep learning system, triggering maintenance alerts [15]. Deep learning models can forecast the 

remaining useful life of critical components, such as fan blades or bearings. By analyzing historical data 

and patterns of wear and tear, these models can provide maintenance schedules that are more precise 

and cost-effective [16]. This approach helps avoid both premature maintenances which can costly and 

unplanned downtime due to component failures. Deep learning models can be integrated with the 

internet of things (IoT) sensors on the fan and surrounding equipment [17]-[19]. These models can 

process the data generated by these sensors in real-time, allowing for more precise monitoring and 

quicker response to potential issues. Deep reinforcement learning [20] can used to optimize the 

operation of axial flow fans for energy efficiency. The system can learn to adjust fan speed and other 

parameters in response to changing environmental conditions, thereby reducing energy consumption 

while maintaining adequate ventilation or cooling. 

Our contributions. To enhance the fan manufacturing industry and address the complexity of design 

parameters, we present a novel hybrid optimal deep learning-based monitoring and maintenance system 

for efficient monitoring of axial flow fan operations. This system makes significant contributions to the 

field, which can be summarized as follows: Our work focuses on the development of a hybrid optimal 

deep learning-based monitoring system for axial flow fans, providing an effective solution to tackle the 

challenges posed by intricate design parameters. 

1. We employ the U-Net pre-trained architecture to enhance feature extraction, allowing us to 

uncover hidden features within the dataset more effectively. 

2. To optimize the extracted features, we introduce an improved algorithm called the triple tree-

seed optimization (IT2SO) algorithm. This algorithm meticulously analyzes the features and 

selects the most optimal ones for further processing. 
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3. For the decision-making aspect of axial flow fan process monitoring and maintenance, we 

propose the utilization of the Deep Boosted Hybrid Learning (DBHL) technique. This decision 

model enhances the overall monitoring process. 

The structure for the rest of this paper is outlined as follows: Section 2 describes the review of literature 

on the axial flow fan design and process monitoring. Section 3 gives the detailed working process of 

proposed technique. The results and comparative analysis of proposed and existing techniques have 

discussed in Section 4. Finally, Section 5 concludes the research work. 

Related work 

In this section, we present the literature review on the design of axial flow fan with the deep learning-

based monitoring and maintenance system. 

State of art study 

Mesalhy et al. [21] developed a computational fluid dynamics (CFD) model that focused on heat 

transfer and airflow across finned surfaces. They correlated fan pressure jump with the volumetric flow 

rate of a high-speed SUNON fan, considering different rotational speeds and ambient pressures 

measured in a fan loop. To validate their CFD predictions, they constructed a test setup consisting of a 

finned surface attached to a heated cylindrical aluminum block, connected to a fan. Comparing 

predicted values to measured results, they reduced the average temperature difference (T-T∞) 

discrepancy from 1.6°C using the k-ε Realizable model to 0.31°C with the k-ω SST model. They also 

conducted numerical simulations to evaluate the impact of fin shape, quantity, and thickness on fin 

structure cooling effectiveness, finding that straight plate fins outperformed offset-strip and corrugated 

designs. 

Angelini et al. [22] conducted initial research to explore correlations between design parameters and 

performance in axial flow fans using a database of approximately 4000 individual cases. They aimed to 

demonstrate the methodology's applicability to incomplete datasets typical in fan manufacturers' 

records. They employed statistical techniques like principal component analysis (PCA) and projection 

to latent structures (PLS) in designing and optimizing industrial turbo machinery. Within the database, 

they fully characterized each individual's geometry, deriving parameters such as blade chord and twist 

distributions, hub pitch angles, and 2D blade profiles at various radii. 

Li et al. [23] developed and optimized a high-loaded transonic fan stage with a curvature control 

technique. Through 3D optimizations, they achieved a fan stage with a total pressure ratio of 2.49 and 

an adiabatic efficiency exceeding 87% at the design operating point. The geometric curvature of the 

blade passage significantly influenced airflow and boundary layer behavior. Their optimization strategy 

minimized secondary flow losses and expanded the fan stage's stall margin. This approach offered high 

precision, operational flexibility, and rapid design iteration for enhancing high-loaded fan and 

compressor capabilities and advancing design system development. 

Shahsavari et al. [24] introduced an innovative approach to redesigning an axial flow fan, aiming to 

maintain constant diffusion and achieve radial equilibrium. They developed a computer program to 

extract three-dimensional fan geometry and estimate parameter distributions along the fan's span. 

Computational fluid dynamics (CFD) tools were used to analyze the redesigned fan's performance under 

various operating conditions, including the design point and off-design scenarios. Comprehensive 

analysis showed advantages over NASA Rotor 67, including a higher total pressure ratio, desired 

pressure ratio at lower rotational speeds, higher efficiency, greater bypass air within a constant diameter, 

and reduced fuel consumption while generating the same specific thrust force. 

Zhen-yu et al. [25] introduced a method for early fault assessment to predict the operational trajectory 

of a low-speed axial fan (LAF). Their approach combined vibration-electric data fusion, support vector 

machine (SVM) with particle swarm optimization (PSO), and cross-validation (CV) to anticipate the 

LAF's operational states. Vibration signals, adversely affected by the fan housing, were complemented 

by electric parameters, which offered advantages in terms of ease of acquisition, precision, resistance 

to interference, and rich operational information. To validate their approach, an experimental study 

established an operational state model for the LAF by fusing vibration and electric data. 

https://jazindia.com/
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Kumar et al. [26] analyzed pressure data using windowed Fourier analysis to distinguish operational 

regions as a fan transitioned from its operational state to stall. They identified four statistical parameters 

to effectively describe pressure data and reduce complexity. Applying K-means clustering to these 

parameters enabled automated differentiation of operational regions. Both types of analyses consistently 

identified a transitional region between no activity and stall, characterized by intermittent parameter 

variations and fluctuating Fourier frequencies. 

Ciaburro et al. [27] automated fan maintenance procedures using acoustic emission data and deep 

learning techniques to diagnose faults. Their study focused on detecting dust deposits on axial fan 

blades. They employed a pre-trained neural network called SqueezeNet, originally designed for 

ImageNet, to analyze spectrograms extracted from acoustic emission recordings of the fan in both "No-

Fault" and "Fault" conditions. Transfer learning on these spectrogram images resulted in a promising 

accuracy rate of 0.95. 

Liang et al. [28] introduced an innovative concept inspired by the forked caudal fin of fish, modifying 

the trailing edge of a prototype fan. Comprehensive experiments explored the impact of this bionic 

forked trailing-edge design on aerodynamic and aeroacoustic performance. Results indicated significant 

advantages, including altered blade loading distribution, reduced pressure disparity near the trailing 

edge, and reduced discrete noise, particularly at the blade passing frequency (BPF) and its harmonics. 

The optimal bionic forked trailing-edge structure achieved a maximum power-saving rate of 7.5% and 

reduced aerodynamic noise by 0.3 to 0.8 dB with a specific included angle of 13.5°. 

Ding et al. [29] introduced a blade design methodology using standard-form rational quadratic Bezier 

curves to define blade angles and bending angles. They employed the Dendrite Net neural network 

model to predict fan pneumatic performance and applied a non-dominated sorting genetic algorithm for 

global optimization. The optimized blade load distribution exhibited radial uniformity and reduced 

adverse effects of suction surface separation vortex and passage vortex. Experiments validated their 

methodology, resulting in a significant increase in fan performance, with a maximum efficiency 

increase of 5.44% and a 2.47% increase in maximum total pressure coefficient. 

Chen et al. [30] analyzed the relationship between airflow volume rate and geometric parameters of 

guide vanes in a selected axial fan. They used design of experiments (DOE) and computational fluid 

dynamics (CFD) techniques, identifying optimal parameters using the Gaussian Process method. The 

study highlighted that the number of guide vanes and the total chord of these vanes had nonlinear 

impacts on airflow volume rate, with vane chord emerging as the primary influencing factor in their 

specific configuration. Optimal guide vane design suggested that reducing vane chord by 38 mm and 

increasing the number of vanes to 18 could result in greater airflow volume at the same rotational speed. 

Summary of Research gaps 

A monitoring and maintenance system for axial flow fans is crucial for several reasons. First and 

foremost, it ensures the reliability and safety of these fans, which are commonly employed in critical 

applications such as ventilation, cooling systems, and industrial processes. Detecting issues early 

through monitoring prevents potential failures that could lead to accidents or costly downtime. 

Moreover, energy efficiency is paramount, and efficient fan operation is essential for conserving energy. 

Regular monitoring allows for adjustments and maintenance to keep the fan running at peak efficiency, 

ultimately reducing energy consumption and associated costs. Proper maintenance practices ensure that 

axial flow fans last longer, reducing the need for frequent replacements. This, in turn, leads to cost 

savings and minimizes the environmental impact associated with manufacturing and disposing of fans. 

Cost reduction is another advantage, as scheduled maintenance based on actual equipment condition is 

more cost-effective than reactive maintenance, which tends to be more expensive and disruptive. With 

a monitoring system, maintenance needs are identified in advance, mitigating unexpected repair costs. 

Furthermore, a monitoring and maintenance system helps optimize fan performance, aligning it with 

changing environmental conditions. Monitoring systems play a critical role in ensuring that fans meet 

emission standards and environmental requirements [21][22]. Moreover, these systems help reduce 

unplanned downtime due to fan failures, which can result in production losses and missed deadlines. 

Additionally, data-driven decision-making is used by monitoring systems, providing valuable insights 

into fan performance and condition [23]. This data enables informed decisions regarding maintenance 
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schedules, upgrades, or replacements. In industrial settings, proper fan functioning is often essential for 

safety compliance. Monitoring systems ensure that fans are in compliance with safety regulations and 

standards, contributing to a safer working environment. 

The design of axial flow fans comes with set of intricate challenges that engineers and designers must 

navigate. One paramount concern is achieving high efficiency while minimizing energy losses 

attributed to factors, aerodynamic inefficiencies, friction, and internal turbulence within the fan 

structure [24]. Simultaneously, managing noise production is crucial, particularly in applications where 

noise reduction is a primary consideration, demanding the design of fans that operate quietly while 

maintaining peak performance [25]. Aerodynamic performance is another vital aspect, requiring the 

optimization of blade shapes, angles, and curvature to attain desired characteristics such as high airflow 

rates and pressure rises [26]. In certain applications involving the use of axial flow fans with liquids, 

the risk of cavitations, phenomenon where local pressure drops below the fluid's vapor pressure needs 

to be addressed through design considerations. Selecting appropriate materials for fan components is 

imperative, especially in environments with corrosive or high-temperature conditions, as material 

choices directly impact durability and maintenance needs [27]-[29]. Vibration is another challenge, as 

axial flow fans can experience vibration issues leading to noise and reduced lifespan. To mitigate these 

issues, proper balancing of fan features is essential [30]. 

2. Materials And Methods 

This The conceptual structure of the proposed axial flow fan design, incorporating a deep learning-

based monitoring and maintenance system, is illustrated in Fig. 1. This comprehensive process 

comprises several essential steps. Initially, data relevant to the axial flow fan's operation and 

performance is collected, typically sourced from the Air Movement and Control Association (AMCA) 

dataset, a valuable repository of fan-related information. Subsequently, the gathered data undergoes 

meticulous preprocessing to ensure its quality and suitability for analysis, which may involve cleaning, 

filtering, and formatting to eliminate noise or inconsistencies. Following data preprocessing, the key 

features pertinent to the axial flow fan are defined and selected for analysis. These features encompass 

crucial parameters such as chord length at the root and tip of the fan blades, pitch angle, twist angle, 

impeller diameter, hub outer diameter, blade number, tip clearance, and frame thickness. These features 

furnish vital insights into the fan's geometry and operational conditions. Deep feature extraction comes 

next, employing a U-Net architecture—a neural network framework commonly employed for image 

processing and segmentation tasks. In this context, it plays a pivotal role in extracting meaningful and 

relevant features from the fan data, thereby facilitating subsequent analysis and modeling. The extracted 

features then undergo optimization using the IT2SO algorithm. This optimization phase aims to enhance 

the quality and utility of the extracted features, rendering them more suitable for modeling and analysis 

purposes. 

https://jazindia.com/
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Fig. 1 Conceptual structure of proposed axial flow fan design using deep learning-based monitoring 

and maintenance 

The core of the proposed system is the development of a decision model, achieved through the 

utilization of DBHL technique. This model incorporates the optimized features and is engineered to 

make predictions and assessments pertaining to the axial flow fan's performance and maintenance 

requisites. Lastly, the predicted results generated by the decision model undergo thorough evaluation. 

This evaluation encompasses array of performance metrics, encompassing accuracy, precision, recall, 

F-measure, R-squared (R2), mean absolute error (MAE), and root mean absolute squared error 

(RMASE). These metrics furnish valuable insights into the accuracy and reliability of the model in 

making predictions and assessments related to the monitoring and maintenance of the axial flow fan. 

Deep feature extraction 

Deep feature extraction is crucial step in our methodology harnesses the power of a pre-trained U-Net 

architecture to efficiently extract hidden and meaningful features from the dataset. The U-Net 

architecture is a convolutional neural network (CNN) framework initially designed for image 

segmentation tasks, but it has proven to be versatile in various applications. The U-Net architecture 

derives its name from its U-shaped structure, characterized by a contracting path (left side) followed by 

an expansive path (right side). The working process of U-Net using the deep feature extraction is given 

as follows.  

• Contracting path: This initial phase of the U-Net captures and encodes information from the 

input data. It consists of series of convolutional and pooling layers that progressively reduce 

the spatial dimensions of the data while increasing the depth. This process extracts hierarchical 

features, starting with low-level details and gradually capturing more abstract and complex 

patterns. 

• Bottleneck: The contracting path culminates in a bottleneck layer, which serves as a bottleneck 

for information flow. It retains essential features while discarding less relevant information, 

enhancing the network's focus on critical aspects of the data. 

• Expansive path: The expansive path is the counterpart to the contracting path. It involves a 

series of up sampling and convolutional layers that gradually reconstruct the spatial dimensions 

of the data. This path's purpose is to decode the learned features and generate a segmentation 

map or, in our case, extract meaningful features. 

• Skip connection: U-Net incorporates skip connections, which connect layers in the contracting 

path with corresponding layers in the expansive path. These connections allow the network to 
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retain fine-grained details during the up-sampling process, aiding in feature extraction and 

maintaining contextual information. 

• Final feature map: At the end of the expansive path, the U-Net architecture produces a final 

feature map. This map contains the extracted features, which have been transformed and 

abstracted through the network's encoding and decoding process. 

The pre-trained U-Net architecture offers a distinct advantage in feature extraction due to its ability to 

capture hierarchical and context-rich information from the dataset. By utilizing this architecture, our 

method ensures that the features extracted are not only effective but also well-suited for subsequent 

analysis and modeling tasks, contributing to the overall success of the monitoring and maintenance 

system for axial flow fans. 

Feature Optimization 

In the work, feature optimization following feature extraction involves refining and enhancing the 

extracted features to ensure they are highly informative and well-suited for the specific goals of 

monitoring and maintaining these fans. After extracting features from the dataset, they may contain 

redundant or noisy information. Feature optimization includes techniques to identify and remove 

redundant features and reduce noise, resulting in a cleaner and more meaningful feature set. In cases 

where the feature space is high-dimensional, dimensionality reduction techniques may be applied to 

reduce the number of features while retaining essential information. This can improve computational 

efficiency and prevent overfitting in subsequent modeling. Feature optimization involves normalizing 

or scaling features to ensure they are on a consistent scale and have standardized distributions, making 

them more suitable for modeling. Feature optimization involves selecting the most relevant features 

that have a significant impact on the monitoring and maintenance goals. By focusing on the most 

informative features, the subsequent modeling process becomes more efficient and effective.  

We develop an improved Triple Tree-Seed Optimization (IT2SO) algorithm for feature optimization to 

identify the most optimal features from extracted ones. IT2SO builds upon the Tree-Seed Algorithm 

(TSA), which leverages tree-seed relationships for optimization [32]. TSA offers simplicity and robust 

solution exploitation, excelling in local search but facing limitations in global search. IT2SO enhances 

seed population initialization, vital for optimal solutions. The optimization involves four phases, 

starting with tree initialization. 

( )MaxgMaxgghMinggh lIRlt ,,,,, −+=
    (1) 

where Mingl ,  represents the lower bound of the search space, MaxgI ,  represents upper bound, and ghR ,

is assigned as a random value within the range [0, 1] for each dimension and location. Seed generation 

is achieved through 

( )gRgghghgh tNts ,,,, −+= 
     (2) 

( )gRghghghgh ttts ,,,,, −+= 
     (3) 

Here, ghs , represents the h-th seed in the g-th dimension produced by the h-th tree, and ght , is the h-th 

tree in the same dimension. gN
represents the best tree location obtained thus far in the g-th dimension, 

and gRt , is a randomly selected tree from the g-th dimension's population. 𝛼 is a scaling factor randomly 

generated within the range of [−1, 1], and 'h' and 'R' are different tree indices being updated. If the seeds' 

fitness values are better than the initial trees, the trees are updated, leading to a new optimal position. 

This process iterates through the three phases, eventually converging to the best value as the number of 

evaluations reaches its maximum. The termination condition is determined by the maximum number of 

function evaluations fesMax , which is computed and updated as follows: 

000,10=CfesMax      (4) 

nsfesfes +=       (5) 
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In IT2SO, 'ns' represents the number of seeds generated by a tree. The algorithm creates initial random 

candidate solutions and steers them toward the optimal solution using mathematical models based on 

sine and cosine functions. It employs random and adaptive variables to balance exploration and 

exploitation throughout various optimization stages. The position is updated in both phases as follows: 

5.0,)sin( 4321

1 −+=+ RPXRRRPP T

h

T

h

T

h

T

h    (6) 

5.0,)cos( 4321

1 −+=+ RPXRRRPP T

h

T

h

T

h

T

h    (7) 

where 
T

hP
represents the current solution's position in the h-𝑡h dimension at T-𝑡h iteration, and 

T

hX
 is 

the destination point's position in the same dimension. Random values 1R
 , 2R

 , 3R
 , and 4R

in the 

range [0, 1] are used in the computation. SCA involves four main parameters: the h-𝑡h dimension, 1R
 

, 2R
 , 3R

 , and 4R
. 1R

determines the next position area, 2R
indicates the movement's distance to the 

target or outward, 3R
introduces randomness to the destination weight, either emphasizing ( 3R

> 1) or 

deemphasizing ( 3R
< 1) its effect. 𝜃 represents a uniform switching between sine and cosine functions. 

To balance exploration and exploitation, the range of sine and cosine functions adapts dynamically. 

t

m
smR −=1

      (8) 

In the optimization process, T represents the current iteration, t is the maximum number of iterations, 

and m is a constant. In basic TTSA, the current best tree serves as the candidate tree, which can lead to 

local optima. SCA excels in global search capability, and it inspired a sine-random-distribution 

migration mechanism. IT2SO adopts a similar mechanism to tree migration. During tree migration, if 

the minimum of all seed values (ns(h)) is less than the objective value of the h-th tree, the original 

IT2SO is applied. Otherwise, new rules are implemented, where the first three trees in the current 

iteration become candidate components, and a sine function inspired by IT2SO is introduced to enhance 

diversity. These enhancements include the addition of two tree migration equations in this phase." 

( ) ( ) ( )RandxhtNtttt gRgxnxnxngh −+++= 2sin3/ ,3,2,1,,    (9) 

( ) ( ) ( ) 25.03/ ,3,2,1,, −−+++= RandtNtttt gRgxnxnxngh    (10) 

where ght , is the i-th tree in the j-th dimension, 1,xnt
, 2,xnt

, and 3,xnt
represent the first three saved trees 

before seed generations, 
( ) 3/3,2,1, xnxnxn ttt ++

indicates gravity center of the first three trees in the 

current iteration, gN
implies best tree location in the j-th dimension obtained thus far, and gRt , is a 

randomly selected tree from the population in the g-th dimension. The working process of feature 

optimization using IT2SO is summarized in Algorithm 1. 

Algorithm 1 Feature optimization using IT2SO 

Input: Known features, deep features, maximum iteration, threshold condition 

Output: Feature optimization 

1. Set up the number of tree population (B) 

2. The initialization of the tree, 
( )MaxgMaxgghMinggh lIRlt ,,,,, −+=

 

3. Set the problems dimensions (C) 

4. While FEs <Max FEs 

5. 
The seeds’ generation is generated by 

( )gRgghghgh tNts ,,,, −+= 
 

6 
In SCA, the following position updated in both phases: 
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7. If rand <X 

8. Evaluate the objective of the tree (t) 

9. Update the FEs 

10. End if 

11. End for 

12. End while 

Axial Flow Fan Design Monitoring and Maintenance 

Axial flow fan design monitoring and maintenance involve ensuring the optimal performance and 

longevity of these fans used in industrial and HVAC systems. They are vital for moving air or gas in a 

straight-line, commonly used in ventilation, cooling, and industrial processes. The computed optimized 

features are then input into the deep boosted hybrid learning (DBHL) technique, serving as the decision 

model for design monitoring and maintenance. DBHL consists of four feature extraction blocks, each 

employing convolutional layers and ReLU activation to capture spatial correlations and non-linearity. 

These blocks are followed by average (
avgp

) and max pooling (
Maxp

), to extract region homogeneity 

and edge features. This systematic approach exhibits characteristic DBHL feature patterns. 


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=
C

c

C

d

dc pup

     (14) 

where, Input channels (p) and filter dimensions (F) are represented as (M×N) and (R×t), respectively, 

with m and n ranging from 1 to M - R + 1 and N - t + 1. 'w' denotes the window size for average and 

max-pooling, while 'h' illustrates the number of neurons. This approach leverages DBHL's diverse 

feature generation, replacing softmax with SVM for enhanced generalization. We propose a DBHL 

technique incorporating a fine-tuned deep learning model based on SL and an SVM as a strong 

classifier." 
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     (15) 

))(||)(( 21 pFpFFP renetrenetdboosted −−=
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0)( =−MHc       (17) 

0)( =− EMH      (18) 

where σ is the soft max activation function, k is the number of classes, and x represents the extracted 

features from the penultimate DBHL layer. In DBHL, the boosted feature space is normalized, and the 

covariance matrix (M) is computed. Eigenvalues and eigenvectors are then derived from M, and 'c' 

represents its determinant. The top components, chosen to capture high variance, are selected and fed 

into SVM. 
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The reduced feature space (p) serves as input, while 
Sz  and n represents the weight feature-space 

orthogonal to the hyper-plane, and bias is the bias term. SVM optimizes a hyper-plane to balance intra 

and inter-class variation, with ζ indicating misclassified instances, and D governing the trade-off 

between misclassification and model generalization. Algorithm 2 outlines the axial flow fan design 

process, including monitoring and maintenance using the DBHL technique." 

Algorithm 2 Design of axial flow fan using DBHL technique 

Input: Optimal best features, control measures and total samples 

Output: Axial flow fan design- monitoring and maintenance 

1. Initialize the random population 

2. 

Define the characteristics patterns 


= =

−+−+=
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h

t

g

ghgnhmnm FPP
1 1
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3. If i=0, j=1 

4. While Do 

5. 

Compute the boosted feature spaces 
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6 The reduced feature space (p) is an input instance 

7. If not discard then 

8. 

Compute the capture high variance 
 +

B
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b
z
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,
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2
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
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9. Find the best output values 

10. End if 

11. End 

3. Results and Discussion 

In this section, we present the results and compare our design approach, along with monitoring and 

maintenance processes, with existing methods for axial flow fans. To evaluate the proposed 

IT2SO+DBHL technique, we use a dataset from the Air Movement and Control Association 

International (AMCA). We implement the technique in Python via the Anaconda distribution, 

leveraging libraries such as scikit-learn, Keras, TensorFlow, and DEAP. 

Dataset description 

AMCA, an international non-profit organization, certifies air-handling equipment like fans, louvers, 

and dampers [31], offering third-party testing and certification services that benefit global 

manufacturers, while also contributing to industry standards. We employed the SW-300 fan 

performance measurement system in this research, illustrated in the wind tunnel equipment diagram. 

The equipment dimensions are 1.9m x 1.5m x 1.4m, with a DC 60V, 10A, and 600W power supply 

system. The study involved testing 19 small axial flow fans, measuring pressure, flow rate, and fan 

speed, while analyzing various fan parameters like chord lengths, pitch angles, and impeller 

characteristics. The dataset was collected from these 19 fan types and randomly split into three subsets: 

70% for training, 15% for validation, and 15% for testing. Data scaling techniques were applied to 

ensure unbiased model performance analysis. 

Quality measure 

In this analysis, we evaluate the performance of the proposed IT2SO+DBHL technique alongside 

established methods using various quality measures, including accuracy, precision, recall, specificity, 

and F-measure. We compare the results of the IT2SO+DBHL technique with existing methods, 

including decision tree (DT), random forest (RF), k-nearest neighbor (k-NN), logistic regression (LR), 

support vector machine (SVM), and deep neural network with genetic algorithm (DNN-GA) [31]. The 

detailed comparison of the proposed and existing techniques with training samples is discussed in Table 

1. The proposed IT2SO+DBHL technique demonstrates a remarkable 22.948% increase in accuracy 

when compared to DT. Additionally, IT2SO+DBHL surpass DT by approximately 21.948% in 

precision, 21.948% in recall, 21.948% in specificity, and 21.949% in F-measure. These substantial 

improvements underscore the superior predictive power of IT2SO+DBHL in low-rate prediction tasks. 
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In addition to the notable 18.290% increase in accuracy, IT2SO+DBHL show significant improvements 

over RF. It achieves approximately 20.249% higher precision, 20.231% higher recall, 20.267% higher 

specificity, and 19.992% higher F-measure compared to RF. These enhancements highlight the robust 

performance of IT2SO+DBHL. Alongside the significant 14.632% increase in accuracy, IT2SO+DBHL 

excel in other parameters when compared to k-NN. It achieves approximately 18.632% higher 

precision, 18.677% higher recall, 18.698% higher specificity, and 18.353% higher F-measure. These 

improvements emphasize the effectiveness of IT2SO+DBHL in capturing low-rate events. In addition 

to the substantial 10.974% increase in accuracy, IT2SO+DBHL outperform LR across other parameters. 

It exhibits approximately 11.974% higher precision, 11.974% higher recall, 11.975% higher specificity, 

and 11.974% higher F-measure. It highlights IT2SO+DBHL's accuracy and precision in low-rate 

prediction tasks. IT2SO+DBHL demonstrate an impressive 7.316% increase in accuracy compared to 

SVM. It also excels in other parameters, achieving approximately 7.315% higher precision, 7.315% 

higher recall, 7.316% higher specificity, and 7.316% higher F-measure. These improvements 

underscore the model's capacity to discern low-rate events effectively. These enhancements reinforce 

IT2SO+DBHL's effectiveness in low-rate prediction tasks, even when compared to robust existing 

techniques. Form Fig. 2, we summarize that the proposed IT2SO+DBHL technique not only excels in 

accuracy also shows significant improvements in precision, recall, specificity, and F-measure across all 

the compared techniques. 

Table 1 Quality measure comparison for low-rate prediction 

Techniques 
Quality measure (%) 

Accuracy Precision Recall Specificity F-measure 
 Training 

DT 74.921 72.614 73.417 71.620 73.013 

RF 78.579 76.272 77.075 75.278 76.671 

k-NN 82.237 79.930 80.733 78.936 80.329 

LR 85.895 83.588 84.391 82.594 83.988 

SVM 89.553 87.246 88.049 86.252 87.646 

DNN-GA [31] 93.211 90.904 91.707 89.910 91.304 

IT2SO+DBHL 96.869 94.562 95.365 93.568 94.962 
 Testing 

DT 63.051 60.941 60.505 59.384 60.722 

RF 68.415 66.305 65.869 64.748 66.086 

k-NN 73.779 71.669 71.233 70.112 71.450 

LR 79.143 77.033 76.597 75.476 76.814 

SVM 84.507 82.397 81.961 80.840 82.178 

DNN-GA [31] 89.871 87.761 87.325 86.204 87.542 

IT2SO+DBHL 95.235 93.125 92.689 91.568 92.906 

 

(a) 
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(b) 

Fig. 2 Results comparison of quality measure for low-rate prediction with (a) training (b) testing 

samples 

A detailed discussion of the results for low-rate prediction with testing samples discussed in Table 1. 

In terms of accuracy, DT achieves 63.051%, while the proposed IT2SO+DBHL technique significantly 

outperforms it by demonstrating an impressive 32.184% increase, reaching an accuracy rate of 

95.235%. This substantial gain showcases the robust predictive capabilities of IT2SO+DBHL in low-

rate prediction. IT2SO+DBHL excel in precision by approximately 32.184%, recall by around 

32.184%, specificity by roughly 32.183%, and F-measure by about 32.184% when compared to DT. 

RF achieves 68.415% accuracy, and IT2SO+DBHL surpasses it by a remarkable 26.820% increase, 

attaining an accuracy rate of 95.235%. This substantial improvement underscores the superior 

predictive power of IT2SO+DBHL in low-rate prediction tasks. IT2SO+DBHL excel in precision by 

approximately 26.820%, recall by around 26.819%, specificity by roughly 26.819%, and F-measure by 

about 26.819% when compared to RF. With an accuracy rate of 73.779%, k-NN is significantly 

surpassed by IT2SO+DBHL, which exhibits an impressive 21.456% increase, achieving an accuracy 

rate of 95.235%. This substantial gain highlights IT2SO+DBHL's capability to accurately classify low-

rate events. IT2SO+DBHL excel in precision by 21.456%, recall by around 21.456%, specificity by 

roughly 21.455%, and F-measure by about 21.456% when compared to k-NN. LR achieves an accuracy 

rate of 79.143%, and IT2SO+DBHL outperforms it with a remarkable 20.092% increase, reaching an 

accuracy rate of 95.235%. IT2SO+DBHL excel in precision by approximately 20.092%, recall by 

around 20.092%, specificity by roughly 20.091%, and F-measure by about 20.092% when compared to 

LR. SVM records an accuracy rate of 84.507%, and IT2SO+DBHL surpass it with a notable 10.728% 

increase, achieving an accuracy rate of 95.235%. This substantial gain underscores IT2SO+DBHL's 

capacity to accurately classify low-rate events. IT2SO+DBHL excel in precision by approximately 

10.728%, recall by around 10.728%, specificity by roughly 10.727%, and F-measure by about 10.728% 

when compared to SVM. Despite the strong performance of DNN-GA, which achieves 89.871% 

accuracy, IT2SO+DBHL shows a notable 5.364% increase in accuracy, reaching an accuracy rate of 

95.235%. This increase further accentuates IT2SO+DBHL's excellence in low-rate prediction. 

IT2SO+DBHL excel in precision by 5.364%, recall by around 5.364%, specificity by roughly 5.363%, 

and F-measure by 5.364% when compared to DNN-GA. Our IT2SO+DBHL technique demonstrates 

remarkable improvements in accuracy, precision, recall, specificity, and F-measure when compared to 

each of the existing techniques in Fig. 2. 

Table 2 provides a detailed discussion of the results for static pressure prediction with training samples. 

DT achieves an accuracy of 70.726%, while the proposed IT2SO+DBHL technique demonstrates a 

remarkable 27.130% increase, reaching an accuracy rate of 97.856%. This substantial gain underscores 

IT2SO+DBHL's superior predictive capabilities in static pressure prediction. Additionally, 

IT2SO+DBHL excel in precision by approximately 27.130%, recall by around 27.131%, specificity by 

roughly 27.130%, and F-measure by about 27.130% when compared to DT. RF records an accuracy 

rate of 75.248%, and IT2SO+DBHL surpass it with a notable 22.608% increase, achieving an accuracy 

rate of 97.856%. This significant improvement emphasizes IT2SO+DBHL's effectiveness in static 
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pressure prediction tasks. IT2SO+DBHL excel in precision by approximately 22.608%, recall by 

around 22.609%, specificity by roughly 22.608%, and F-measure by about 22.608% when compared to 

RF. With an accuracy rate of 79.769%, k-NN is significantly surpassed by IT2SO+DBHL, which 

exhibits an impressive 18.087% increase, achieving an accuracy rate of 97.856%. This substantial gain 

highlights IT2SO+DBHL's capability to accurately predict static pressure. Furthermore, IT2SO+DBHL 

excel in precision by approximately 18.087%, recall by around 18.087%, specificity by roughly 

18.087%, and F-measure by about 18.087% when compared to k-NN. LR achieves an accuracy rate of 

84.291%, and IT2SO+DBHL outperforms it with remarkable 13.565% increase, reaching an accuracy 

rate of 97.856%.  

Table 2 Quality measure comparison for static pressure prediction 

Techniques 
Quality measure (%) 

Accuracy Precision Recall Specificity F-measure 
 Training 

DT 70.726 69.328 69.222 68.100 69.275 

RF 75.248 73.850 73.744 72.622 73.797 

k-NN 79.769 78.371 78.265 77.143 78.318 

LR 84.291 82.893 82.787 81.665 82.840 

SVM 88.813 87.415 87.309 86.187 87.362 

DNN-GA [31] 93.334 91.936 91.830 90.708 91.883 

IT2SO+DBHL 97.856 96.458 96.352 95.230 96.405 
 Testing 

DT 67.828 65.882 64.126 63.855 64.992 

RF 72.350 70.404 68.648 68.377 69.515 

k-NN 76.871 74.925 73.169 72.898 74.037 

LR 81.393 79.447 77.691 77.420 78.559 

SVM 85.915 83.969 82.213 81.942 83.081 

DNN-GA [31] 90.436 88.490 86.734 86.463 87.604 

IT2SO+DBHL 94.958 93.012 91.256 90.985 92.126 

IT2SO+DBHL excel in precision by approximately 13.566%, recall by around 13.566%, specificity by 

roughly 13.566%, and F-measure by about 13.566% when compared to LR. SVM records an accuracy 

rate of 88.813%, and IT2SO+DBHL surpass it with a notable 9.043% increase, achieving an accuracy 

rate of 97.856%. This substantial gain underscores IT2SO+DBHL's capacity to accurately predict static 

pressure. IT2SO+DBHL excel in precision by approximately 9.043%, recall by around 9.043%, 

specificity by roughly 9.043%, and F-measure by about 9.043% when compared to SVM. Despite the 

strong performance of DNN-GA, which achieves 93.334% accuracy, IT2SO+DBHL shows a notable 

4.522% increase in accuracy, reaching an accuracy rate of 97.856%. IT2SO+DBHL excel in precision 

by approximately 4.522%, recall by around 4.522%, specificity by roughly 4.522%, and F-measure by 

4.522% when compared to DNN-GA. Our IT2SO+DBHL technique not only excels in accuracy but 

also demonstrates significant improvements in precision, recall, specificity, and F-measure when 

compared to each of the existing techniques in Fig. 3. 
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(a) 

 

(b) 

Fig. 3 Results comparison of quality measure for static pressure prediction with (a) training (b) testing 

samples 

Table 2 provides a detailed discussion of the results for static pressure prediction with testing samples. 

DT achieves an accuracy of 67.828%, while the proposed IT2SO+DBHL technique significantly 

outperforms it by demonstrating an impressive 27.130% increase, reaching an accuracy rate of 

94.958%. This substantial gain showcases IT2SO+DBHL's superior predictive capabilities in static 

pressure prediction. IT2SO+DBHL excel in precision by approximately 27.130%, recall by around 

27.131%, specificity by roughly 27.130%, and F-measure by about 27.130% when compared to DT. 

RF records an accuracy rate of 72.350%, and IT2SO+DBHL surpass it with a notable 22.608% increase, 

achieving an accuracy rate of 94.958%. This significant improvement emphasizes IT2SO+DBHL's 

effectiveness in static pressure prediction tasks. IT2SO+DBHL excel in precision by approximately 

22.608%, recall by around 22.609%, specificity by roughly 22.608%, and F-measure by about 22.608% 

when compared to RF. With an accuracy rate of 76.871%, k-NN is significantly surpassed by 

IT2SO+DBHL, which exhibits an impressive 18.087% increase, achieving an accuracy rate of 

94.958%. This substantial gain highlights IT2SO+DBHL's capability to accurately predict static 

pressure. IT2SO+DBHL excel in precision by approximately 18.087%, recall by around 18.087%, 

specificity by roughly 18.087%, and F-measure by about 18.087% when compared to k-NN. LR 

achieves an accuracy rate of 81.393%, and IT2SO+DBHL outperforms it with a remarkable 13.565% 

increase, reaching accuracy rate of 94.958%. This significant improvement emphasizes 

IT2SO+DBHL's effectiveness in static pressure prediction. IT2SO+DBHL excel in precision by 

approximately 13.566%, recall by around 13.566%, specificity by roughly 13.566%, and F-measure by 

about 13.566% when compared to LR. SVM records an accuracy rate of 85.915%, and IT2SO+DBHL 

https://jazindia.com/


 

 

 https://jazindia.comAvailable online at:  - 305 - 
 

surpass it with a notable 9.043% increase, achieving an accuracy rate of 94.958%. This substantial gain 

underscores IT2SO+DBHL's capacity to accurately predict static pressure. IT2SO+DBHL excel in 

precision by approximately 9.043%, recall by around 9.043%, specificity by roughly 9.043%, and F-

measure by about 9.043% when compared to SVM. Despite the strong performance of DNN-GA, which 

achieves 90.436% accuracy, IT2SO+DBHL shows a notable 4.522% increase in accuracy, reaching an 

accuracy rate of 94.958%. IT2SO+DBHL excel in precision by approximately 4.522%, recall by around 

4.522%, specificity by roughly 4.522%, and F-measure by about 4.522% when compared to DNN-GA. 

Our IT2SO+DBHL technique not only excels in accuracy but also demonstrates significant 

improvements in precision, recall, specificity, and F-measure when compared to each of the existing 

techniques in Fig.3. 

Error measure 

Table 3 provides a detailed discussion of the error measure comparison for both flow rate and static 

pressure prediction. For flow rate prediction, the R2 value for DNN-GA is 0.9940, while the proposed 

IT2SO+DBHL technique achieves a significantly higher R2 of 0.9980 in the training phase. In the 

testing phase, DNN-GA achieves an R2 of 0.9910, and IT2SO+DBHL maintain a superior R2 of 0.9960. 

These results indicate that IT2SO+DBHL outperform DNN-GA with a substantial increase in R2 in 

both training and testing, shows its improved predictive accuracy. DNN-GA and IT2SO+DBHL 

demonstrate remarkably low MAE values of 0.0000 in the training phase. In the testing phase, DNN-

GA records a MAE of 0.0010, while IT2SO+DBHL achieves a lower MAE of 0.0009. IT2SO+DBHL 

exhibits a slight decrease in MAE compared to DNN-GA in the testing phase, signifying its superior 

accuracy in predicting flow rates. In the training phase for flow rate prediction, DNN-GA and 

IT2SO+DBHL yield identical RMSE values of 0.0010. However, in the testing phase, DNN-GA 

produces an RMSE of 0.0010, while IT2SO+DBHL achieve a lower RMSE of 0.0008. This 

demonstrates that IT2SO+DBHL maintain better accuracy with a reduced RMSE for flow rate 

prediction. 

Table 3 Error measure comparison for both Flow rate and static pressure prediction 

Error measure 
Training Testing 

DNN-GA [31] IT2SO+DBHL DNN-GA [31] IT2SO+DBHL 
 Flow rate prediction 

R2 0.9940 0.9980 0.9910 0.9960 

MAE 0.0000 0.0000 0.0010 0.0009 

RMSE 0.0010 0.0010 0.0010 0.0008 
 Static pressure prediction 

R2 0.998 0.999 0.997 0.998 

MAE 0.420 0.258 0.565 0.326 

RMSE 0.613 0.517 0.818 0.587 

For static pressure prediction, DNN-GA achieves an R2 of 0.998 in the training phase, while 

IT2SO+DBHL surpass it with an R2 of 0.999. In the testing phase, DNN-GA records an R2 of 0.997, 

and IT2SO+DBHL maintain superior R2 of 0.998. IT2SO+DBHL's enhanced predictive capability, 

with higher R2 values in both training and testing compared to DNN-GA. DNN-GA and IT2SO+DBHL 

exhibit different MAE values. In the training phase, DNN-GA has a MAE of 0.420, while 

IT2SO+DBHL achieve a lower MAE of 0.258, indicating superior accuracy for IT2SO+DBHL. In the 

testing phase, DNN-GA's MAE is 0.565, whereas IT2SO+DBHL maintain a lower MAE of 0.326, 

demonstrating its improved accuracy in static pressure prediction. In the training phase, DNN-GA 

records an RMSE of 0.613 while IT2SO+DBHL achieve a lower RMSE of 0.517, indicating its superior 

accuracy. In the testing phase, DNN-GA produces an RMSE of 0.818, whereas IT2SO+DBHL 

maintains a lower RMSE of 0.587, further underscoring its enhanced accuracy in static pressure 

prediction. 
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(b) 

Fig. 4 Plot of the flow rate prediction using (a) training and (b) testing samples 
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(b) 

Fig. 5 Plot of the static pressure prediction using (a) training and (b) testing samples 

Fig. 4 illustrates a comparison between the actual and predicted flow rates using both training and 

testing samples. Meanwhile, Fig. 5 presents a similar comparison but for static pressure prediction using 

the same training and testing datasets. These two figures collectively serve as visual evidence 

showcasing the enhanced predictive performance of IT2SO+DBHL in the context of axial flow fan 

design. The effectiveness of the proposed IT2SO+DBHL methodology in improving the accuracy of 

predicting these crucial parameters is clearly demonstrated through these graphical representations. 

4. Conclusion 

Our approach introduces a novel method for monitoring and maintaining axial flow fans through the 

integration of optimal deep learning with an IoT system. We employ the pre-trained U-Net architecture 

to effectively extract concealed features from the dataset. Additionally, we introduce the improved triple 

tree-seed optimization (IT2SO) algorithm, which plays a crucial role in optimizing the extracted 

features, allowing us to identify the most relevant ones. To support informed decision-making for the 

monitoring and maintenance of axial flow fans, we propose the utilization of the deep boosted hybrid 

learning (DBHL) technique as the decision model to ensure their proper operation. To validate the 

effectiveness of our IT2SO+DBHL approach, we conducted rigorous experiments using the air 

movement and control association international (AMCA) dataset. The outcomes of these experiments 

unequivocally demonstrate the superior performance of our monitoring and maintenance methodology 

when compared to existing techniques. This superiority is evident in terms of both quality measures and 

error assessments, underlining the substantial advancements our approach brings to the field of axial 

flow fan management. 
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