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Abstract 

Accurate prediction of wind speed records is an important task in 

various disciplines including agriculture, meteorology, climatology, 

navy, energy studies, wind power, etc. Although some traditional models 

have been suggested and applied for wind forecast, machine learning 

(ML) approaches can be suitable alternatives for such models due to 

their successful performance inn wide range of subjects and phenomena. 

On the other hand, using ML techniques alone might not be 

suitable/successful in all cases especially when the studied data series 

has strong time dependency and the series show clear periodicity. So, 

applying wavelet transform to resolve the issue might be a good choice 

to increase the generalization ability of the ML techniques. The present 

study aimed at assessing the performance of the random forest (RF) 

method for predicting daily wind speed records at four sites in Iran. The 

wavelet transform was used for producing new sub series of data and 

make the new wavelet- random forest (WR) models. Both the RF and 

WR models were fed with the previously recorded wind speed values 

with different lag times. The obtained results revealed that the WRF has 

improved the performance of the RF model inn all studied locations, 

considerably. 

Keywords: Wind speed, Iran, Random forest, Wavelet-random forest. 

Introduction 

Accurate prediction of wind speed is very important in agricultural disciplines, for industrial sites and 

hydrodynamic, coastal, wind wave, and ocean studies. Electrical system dependencies is one of the mostly 

applied techniques for wind speed prediction (1) Mohandas (2022) (2), while semi-empirical correlation (3) 

Ingle (2023) (4) and the stochastic time series analysis (5) and Verma (2022) have been applied dofar (6). 

Another alternative for those techniques might be using machine learning (ML) methods that capture the auto 

correlation nature of the wind speed to generate future predictions in different time scales and prediction 

intervals. Considerable studies focusing on using ML techniques have been reported by literature (e.g. 

Mohandes et al., 1998 (7); More and Deo, 2003 (8); Li and Shi, 2010 (9); Fadulemulla, 2023 (10); Wang et 

al. 2021 (11); Alkabbani et al. 2023 (12); Kumar Saini et al. 2023 (13)). 
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Although outstanding and powerful, ML methods can’t map the nonlinear relations between the inputs 

(predictors) and target parameters when the data carry considerable noise and needs a set of pre-processing 

procedures. Among different pre-processing techniques, the wavelet transform is one of the commonly used 

ones that have been applied in various disciplines alike wind speed modeling. It generate a set of details and 

approximates for an available input patterns, so the most influential ones are selected as predictors. Owing to 

those advantages, the present study aimed at assessing the prediction ability of random forest (RF) 

methodology in predicting daily wind speed values at four locations of Iran. A further coupled wavelet-RF 

(WRF) methodology was also suggested for improving the prediction accuracy (14). For increasing the 

models validity, k-fold cross validation strategy was used to make a complete scan of the available patterns.  

Materials and Methods 

Random Forest (RF) 
Employing decision trees to perform non-parametric classification, Random Forest (RF) is an ensemble 

machine learning technique, which improves the model's performance by mitigating inter-tree correlations 

through two key adjustments: training each tree with a subset of the training data and randomly selecting a 

subset of predictor variables for each decision node. RF assigns a class label to each pixel in an image based 

on the majority vote of the decision trees, and provides the option to measure uncertainty. Among various 

advantages of this method, one may mention its resilience when dealing with high-dimensional, correlated, or 

small datasets, as well as its capability to rank the importance of input variables. 

Discrete Wavelet Transform (DWT) 

The mother wavelet function ψ(t) defined as ∫ ψ(𝑡)dt = 0. ψ(𝑡)
+∞

−∞
 can be obtained by compressing and 

expanding the following term ψ(t): 

 

𝜓𝑎.𝑏(𝑡) = |a|−
1
2ψ (

𝑡 − 𝑏

𝑎
)            𝑏 𝜀 𝑅.  𝑎 𝜀 𝑅. 𝑎 ≠ 0 (1) 

where ψa,b(t) = the successive wavelet, a = scale parameter, b = time parameter; R = the domain of real 

numbers. If ψa,b(t) satisfies Eq. 1, for the time series f (t) ε L2(R) or finite energy signal, successive wavelet 

transform of f (t) reads: 

𝑊𝜓𝑓(𝑎. 𝑏) = |a|−
1
2 ∫ 𝑓(𝑡)

𝑅

ψ̅ (
𝑡 − 𝑏

𝑎
) 𝑑𝑡  (2) 

whereψ̅(𝑡) = complex conjugate functions of ψ(t). The wavelet transform is the decomposition of f(t) under 

different resolution level (scale) as can be observed in Eq. 2. Now, let 
jaa 0= , jakbb 00= , 10 a , b0 є R, 

k, j are integer numbers. So, discrete wavelet transform of f(t) can be written as: 

𝑊𝜓𝑓(𝑗. 𝑘) = a0
−𝑗 2⁄ ∫ 𝑓(𝑡)

𝑅

ψ̅(𝑎0
−𝑗

𝑡 − 𝑘𝑏0)𝑑𝑡 (3) 

The most common (and simplest) choice for the parameters a0 and b0 is 2 and 1 time steps, respectively. 

This power of two logarithmic scaling of the time and scale is known as dyadic grid arrangement (15). Eq. 3 

becomes binary wavelet transform when a0 = 2, b0 = 1: 

 

𝑊𝜓𝑓(𝑗. 𝑘) = 2−𝑗 2⁄ ∫ 𝑓(𝑡)
𝑅

ψ̅(2−𝑗𝑡 − 𝑘)𝑑𝑡 (4) 

 

For a discrete time series f(t), where occurs at different time t (i.e., here integer time steps are used), the DWT 

can be defined as 

 

𝑊𝜓𝑓(𝑗. 𝑘) = 2−𝑗 2⁄ ∑ 𝑓(𝑡)

𝑁−1

𝑡=0

ψ̅(2−𝑗𝑡 − 𝑘) (5) 

where Wψ f (j,k) is wavelet coefficient for the discrete wavelet of scale a = 2j, b = 2jk. 

https://jazindia.com/


Journal of Advanced Zoology  

Available online at: https://jazindia.com  2420 

Hybrid Models 

In order to increase the prediction ability of the applied RF models, a further coupled wavelet-random forest 

(WRF) model was designed and implemented. Hence, the original time series of the studied variable (wind 

speed) were decomposed with a certain decomposition level into some sub-series using the Mallat’s 

algorithm (15). Then, the generated sub-series were introduced as RF inputs.  

Used Data 

Daily wind speed records from four locations of I.R. Iran was used in the present study. Figure 1 presents the 

locations of the sites. Data period covered a period of 5 years.  At each location, a k-fold cross validation 

mode was applied to train and test the adopted methods. So, entire data were divided by 2 parts (based on the 

available data set) and each time the patterns of one complete year were used as testing data set, while the 

rest of patterns were used in developing/training the models. Repetition of this procedure allowed a complete 

sacn of the data during the study period. Once the best architecture of RF was identified, the model was 

applied and the 75% of the whole data were used for training and the last 25% was reserved for testing.    

 

 
Figure 1. Geographical position of the study areas 

 

Some statistical indices of the wind speed records at the studied sites have been listed in Table 1.  In the 

table, Xmean, Xmax, Xmin, SD, CV and CSX show, respectively, the mean, maximum, minimum, standard 

deviation, coefficient of variation and skewness coefficient of wind records. As can be seen from the tables, 

the skewness coefficient is higher for the test data in all the locations. This may encounter the models with 

some difficulties during the temporal interpolation for testing. Nevertheless, the coefficient of variation (CV) 

values are higher in Kuhrang that can cause some difficulties with wind speed prediction there.  

Performance Evaluation Measures 

Three statistical indices as follows, were applied for evaluation of the RF and WRF models: the correlation 

coefficient (R), the root mean squared error (RMSE) and the scatter index (SI).  

 

𝑅 =
∑ (𝑊𝑆0 − 𝑊𝑆̅̅̅̅̅

0)(𝑊𝑆𝑀 − 𝑊𝑆𝑀)𝑛
𝑖=0

√∑ (𝑊𝑆0 − 𝑊𝑆̅̅̅̅̅
0)2 ∑ (𝑊𝑆𝑀 − 𝑊𝑆̅̅̅̅̅

𝑀)2𝑛
𝑖=0

𝑛
𝑖=0

 
(6) 

𝑆𝐼 =
𝑅𝑀𝑆𝐸

𝑊𝑆0
̅̅ ̅̅ ̅̅

=

√1
𝑁

∑ (𝑊𝑆𝑟 − 𝑊𝑆0)2𝑁
𝑖=1

𝑊𝑆0
̅̅ ̅̅ ̅̅

 
(7) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑊𝑆𝑟 − 𝑊𝑆0)2

𝑁

𝑖=1

 (8) 
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where WSo is the observed wind speed value at the ith time step, WSr is the simulated wind speed value at the 

ith time step, and n shows the patterns number.  

Table 1. Statistical parameters of used hourly and daily wind speed data 
 Xmean Xmax Xmin SD CV CSX 

Ardal       

Training set 1.655 4.862 0.5 0.646 0.390 0.480 

Testing set 1.680 3.740 0.561 0.537 0.320 0.709 

Whole data 1.662 4.862 0.5 0.620 0.373 0.513 

Borujen       

Training set 2.431 7 0.5 0.879 0.362 0.964 

Testing set 2.323 6.358 0.654 0.866 0.373 1.370 

Whole data 2.404 7 0.5 0.877 0.365 1.058 

Kuhrang       

Training set 1.085 4.114 0.5 0.644 0.594 1.554 

Testing set 0.911 3.459 0.5 0.456 0.501 1.605 

Whole data 1.042 4.114 0.5 0.607 0.583 1.648 

Lordegan       

Training set 1.681 6.919 0.5 0.759 0.452 0.978 

Testing set 1.332 4.488 0.5 0.705 0.529 1.274 

Whole data 1.594 6.919 0.5 0.761 0.477 1.007 

 

Decomposing Wind Speed Records by Wavelet Transform 

After decomposing the original time series of the wind speed records, the correlation values between each 

decomposition (D sub series) and original wind speed values were analyzed and those with the highest 

correlation values were selected to be included in the input matrix. Once the most effective signals were 

selected, they were used as inputs of RF model (instead of original wind speed records) to built the coupled 

WRF model.  

Results and Discussion 

As the first step, the input parameters of the models should be determined. Here, based on the partial auto 

correlation function (PACF), the models were feed by different time lags of wind speed records. Figure 2 

illustrates the P diagrams of the wind speed records at the studies locations. Based on the PACF information, 

four time lags were selected as predictors of RF model to predict daily wind speed 1-day ahead. These lags 

were included in the input matrix step-by-step, so each time one predictor was additionally involved in the 

matrix so that the effect of each newly included variable can be distinguished, too. The same mode was 

adopted for the coupled WRF models to feed the input space.  
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Lordegan Kuhrang 

Figure 2. Partial auto-correlation function (PACF) of daily wind speed at the studied lications. 

 

Table 2. Statistics of wind speed records during the study period 

  RF   WRF  

 SI NS R SI NS R 

Ardal 

WSt 0.337 0.218 0.469 0.111 0.659 0.771 

WSt-1 , WSt 0.334 0.154 0.421 0.118 0.649 0.764 

WSt-2 , WSt-1 , WSt 0.339 0.219 0.457 0.109 0.721 0.807 

WSt-3 , WSt-2 , WSt-1 , WSt 0.327 0.201 0.445 0.108 0.689 0.788 

Borujen 

WSt 0.330 0.221 0.472 0.109 0.663 0.775 

WSt-1 , WSt 0.318 0.207 0.470 0.108 0.722 0.808 

WSt-2 , WSt-1 , WSt 0.330 0.229 0.473 0.108 0.683 0.785 

WSt-3 , WSt-2 , WSt-1 , WSt 0.315 0.222 0.475 0.109 0.607 0.742 

Lordegan 

WSt 0.402 0.199 0.447 0.137 0.707 0.801 

WSt-1 , WSt 0.414 0.168 0.421 0.134 0.723 0.821 

WSt-2 , WSt-1 , WSt 0.403 0.201 0.440 0.143 0.682 0.789 

WSt-3 , WSt-2 , WSt-1 , WSt 0.405 0.213 0.462 0.142 0.750 0.833 

Kuhrang 

WSt 0.537 0.264 0.525 0.173 0.699 0.799 

WSt-1 , WSt 0.481 0.301 0.556 0.162 0.834 0.868 

WSt-2 , WSt-1 , WSt 0.498 0.254 0.507 0.172 0.786 0.850 

WSt-3 , WSt-2 , WSt-1 , WSt 0.473 0.315 0.566 0.165 0.800 0.851 

 

Table 2 sums up the statistical indices of the applied models during the testing period. Attending to the RF 

models, the results are generally far from the observed values as can be seen from higher SI and lower NS 

quantities. Among the studied locations, the models presented higher accuracy in Borujen, although the error 

values are still high. On the other hand, the quadruple-input RF model that uses the wind records of 4 

successive days gave better results than the rest of input sets that may be due to the inclusion of more time 

steps (and consequently, more information on time series characteristics of wind records) in the input matrix. 

Overall, the obtained results by RF can’t be applied for theoretical/practical issues due to the higher error 

values shown by SI and NS indices. Therefore, the necessity of coupling the model with wavelet transform 

for improving the outcomes of the RF is emphasized again.  

o the coupled WRF models, the same four input combinations were constructed by including each time the 

details and approximations of a new wind speed series. Analyzing the error statistics of the WRF models in 

Table 2 shows that, again, the models presented the most accurate results in Borujen. The average 

differences between the models performance metrics among the studied locations is low and it may be stated 

that the coupled WRF has been successful in predicting daily wind speed records of the studied locations. 
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urther, although the quadruple-input RF provided better predictions in all locations, the differences between 

the WRF models fed with different combinations of predictors are not more obvious and monotonously 

fluctuate among them at every four sites (16).  

Comparing the results obtained by RF and WRF models revealed the performance improvement of the RF 

when the wavelet transform was applied for decomposition of the original time series.  

Table 3. Performance improvement gained by WRF for two sample input set 

 WSt-1 , WSt WSt-3 , WSt-2 , WSt-1 , WSt 
 SI NS R SI NS R 

Ardal       

RF 0.334 0.154 0.421 0.327 0.201 0.445 

WRF 0.118 0.649 0.764 0.108 0.689 0.788 

Accuracy increment 35 % 24.0 % 55 % 33 29 % 56 % 

Borujen       

RF 0.318 0.207 0.470 0.315 0.222 0.475 

WRF 0.108 0.722 0.808 0.109 0.607 0.742 

Accuracy increment 29% 29% 58% 29% 37% 64% 

Lordegan       

RF 0.414 0.168 0.421 0.405 0.213 0.462 

WRF 0.134 0.723 0.821 0.142 0.750 0.833 

Accuracy increment 31% 23% 51% 29% 28% 55% 

Kuhrang       

RF 0.481 0.301 0.556 0.473 0.315 0.566 

WRF 0.162 0.834 0.868 0.165 0.800 0.851 

Accuracy increment 30% 36% 64% 29% 39% 67% 

 

Table 3 provides an illustration of performance improvement obtained through developing the WRF for two 

sample input set (double-input and quadruple-input models). In Ardal, WRF has improved the SI and NS 

indices, respectively, by 35% and 24% for double-input model and by 33% and 29% for quadruple-input 

model (17, 18). In Borujen, the performance improvement for SI and NS are, respectively, 29% and 29% for 

double-input model and 29% and 37% for quadruple-input model. In Lordegan, the WRF model improved 

the SI and NS values for duuble input model with 31% and 23% and for quadruple-input model with 29% 

and 28%, respectively (19). Finally, in Kuhrang, SI and NS improvement by WRF model were, respectively, 

30% and 36% for double-input model and 29% and 39% for quadruple-input model. SI improvements were 

higher for double-input models in all locations, while the NS improvements of quadruple-input models were 

higher than double-input models (20). This may be due to the effect of model error reduction and variance 

simulation, as SI presents the error magnitude while NS includes the variance similarity, too.  

Overall, it is seen that the WRF model is more powerful than the single RF model inn prediction of daily 

wind speed values in all locations. The resolution power of wavelet transform on the original wind speed 

signals that separate them into daily, monthly, etc periods may cause such performance improvement as 

discussed by Kisi et al. (2011) and Ahmed (2022) (21, 22). Since the wind speed records time series is 

periodic, clear presentation of such periods/cycles would be essential to better mapping of the nonlinear 

relations between different time events of a certain series.  

Conclusion 

A modeling process using random forest (RF) and wavelet random forest (WRF) methodologies were 

adopted here for predicting daily wind speed values at four stations of Iran. Daily data were introduced with 

various input combinations (based on partial auto correlation functions) to RF model and the performances of 

the models were assessed using statistical indices. Based on the overall evaluation, RF couldn’t simulate 

daily wind speed variations well. So, wavelet decomposition was applied to the original wind speed time 

series and the decomposed components were coupled with the RF model with the same input combinations to 

generate the wind speed values through WRF model. Analysis confirmed that the WRF improved the RF 

performance with considerable reduction inn error terms in all locations and adopted input combinations. The 

results suggests that using wavelet decomposition for periodic data when the task is simulating the 

phenomena by machine learning techniques, would be essential to overcome some difficulties encountered 
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due to periodicity that detract the models accuracy level. Further studies might revise these outcomes using 

other machine learning techniques and different time scales to generate global general conclusions. 
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