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ABSTRACT 

 

Nanofibers provide flexible surface functionalities, porosity, and a broad 

region of surface changing 3D topography. It treats wound healing, pain 

management, infectious diseases, diseases of the gastrointestinal tract, 

neurological diseases, and problems of the cardiovascular system. 

Electrospinning, is one of the method used to create the nanofibers. 

Different polymers are used in the production of nanofibers, depending 

on their intended application.. It examines the types, histories, benefits, 

drawbacks, and polymers employed in nanofiber technology. 

Additionally, a summary of the types of polymers employed in the 

creation of nanofibers was provided. The review article mostly discusses 

the types of electrospinning as a fabrication method and the applications 

of nanofibers. 
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INTRODUCTION: 

 

Nanofibers, a type of one-dimensional (1D) nanomaterial, are well-known for their numerous applications in 

both science and industry. Compared to other regularly used base materials, nanofibers possess superior 

mechanical properties and a diameter a thousand times smaller than human hair. They also have a lot of 

porosity, changing surface functions, and surface variable 3D topography[1]. Nanofibers can be produced 

using a variety of materials. The nanofibers are categorized based on the polymers[2 The next goals is to 

improve control over the alignment of the nanofibers during deposition. It is feasible to use nanofibers in 

biomedical applications such as filters, in vivo models, scaffolods for tissue engineering, wound dressings, and 

nanomedicine.  
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Fig 1: Nanofibers 

 

Nanofibers lessen the toxicity and side effects, facilitate easier alternate administrations, because are used in 

tissue engineering. The physical properties must be taken into account in order to mimic the nanoscale 

properties of human tissues. There are numerous uses for nanofibers in drug delivery systems and medical 

equipment. They are used to prevent, diagnose, or cure disorders. Applications for nanofiber medical devices 

includes wound healing. 

 

HISTORY: 

 

The first nanofibers were made via electrospinning almost 400 years ago. William Gilbert invented the process 

of electrospinning approximately 1600. The ongoing electrospinning research has boosted competitiveness 

amongst laboratory-scale equipment. The market was reopened with a variety of spinning and collecting 

electrode accessories. Numerous companies have developed innovative production methods based on 

conventional electrospinning in an effort to overcome low productivity [4]. 

 

TYPES: 

 Nanoscience and nanotechnology have created several different types of nanoparticles during the last 20 years, 

including nanofibers, nanorods, nanowires, and nanosheet nanomaterials. According to this categorization, 

nanomaterials of 100 nm are called nanofibers. The size, shape, and content of the nanofibers and nanofibrils 

are classified [7]. 

 

Inorganic nanofibers: 

Electrospinning has been used to manufacture a number of inorganic nanofibers, which are then calcined [8]. 

Inorganic nanofibers have been produced by photocatalysis. [9,10]. 

 

 
Fig 2: Inorganic nanofibers 

 

Carbon nanofibers: 

Carbon nanofibers (CNFs), a type of one-dimensional (1D) nanomaterial, are mostly carbon-based. [11,12]. 

Ideal cylindrical nanofibers coated with graphene layers are called carbon nanotubes. Cone, cup, or plate-

shaped graphene layers are stacked to create cylindrical carbon nanofibers that are electrospun or vapor-grown 

[13]. 
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Fig3: carbon nanofibers 

 

Polymer based nanofibers: 

Numerous products and services, including clothing, fishing nets, surgical masks, heart valve replacements, 

air conditioner filters, cigarettes, and vascular grafts, use polymer-based fibers. The spinneret design and 

collecting mechanism were improved to generate nanofibers. Polymer melt electrospinning must be carried 

out in a vacuum [15]. Splintered nanofibers are only being investigated .[16].  

 

 
Fig 4: Polymer based nanofibers 

 

Composite nanofibers: 

Composite nanofibers are frequently made by fusing together several phases of various elements or chemical 

structures. This nanofibers have microscopic activity, amazing conductivity. This nanofibers has found 

applications in various industries due to its exceptional physical and chemical qualities. [27]. With the help of 

electrospun can produce these nanofibers. Composite nanofibers are done by several techniques. [24]. 

 

 
Fig 5: composite nanofibers 

 

POLYMERS: 

Natural polymers are mostly utilized in nanofiber technology; many other polymers, such as synthetic 

polymers , can only be synthesized. Elastomers are typically produced by polymers having high extension 

properties in ambient circumstances. Synthetic fibers, namely polyester and nylon, can efficiently be used. 

Plastic resins that are sold commercially. They improve mechanical qualities and processability [37]. 
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ROLE OF POLYMERS: 

Polymers, both natural and manmade, mixes of polymers, and other composite materials can be spun into 

nanofibers. Choosing the right polymer is essential to creating nanofibers with characteristics unique to a given 

use. For biomedical applications, the ideal polymer should have mild hydrophilicity, mechanical strength, 

biodegradability, and safety. The polymers used to fabricate nanofibers can come from either synthetic or 

natural sources, and each has its own advantages and disadvantages [17]. In regenerative medicine, the 

application of  scaffolds for tissue engineering, dressings for wounds, and vascular grafts are produced. [18] 

 

TYPES: 

 

Natural: 

Transdermal medication delivery may be investigated with nanofibers manufactured from both natural and 

synthetic polymers. When it comes to nanofibers, natural polymers are chosen over synthetic polymers because 

of their superior qualities. The most popular method for electrospinning to make nanofibers are 

polysaccharides and proteins [19].  

It is possible to create nanofibers from electrospun polysaccharides that contain cellulose, alginate, and 

chitosan derivatives and use them as a delivery system. Chitosan is made up of the linear co-polymers.  To 

encapsulate the fungus, hybrid electrospun nanofibers were created by mixing cellulose acetate and polyvinyl 

alcohol [33]. 

 

Semi synthetic polymers: 

They are processed to recover their useful forms. Semi-synthetic polymers originate from cellulose, a naturally 

occurring polymer. Semi-synthetic polymers are sometimes known as thermoplastic polymers [36]. 

 The process of preparing cellulose is called acetylation; cellulose diacetate is made with sulfuric acid and 

acetic anhydride. Usually, this stuff is utilized to create film spectacles that resemble threads. Examples of 

semi-synthetic polymers are cellulose nitrate and gun cotton, among others [37,38]. 

 

Synthetic polymers: 

The majority of materials are utilized in the production of nanofibers are polylactic acid, polyvinylpyrrolidone, 

PCL and its co-polymers, PEO, and PVA.  

Polyethylene oxide is frequently utilized by drug delivery and tissue engineering applications. Most nanofiber 

compositions are made up of polycaprolactone, polylactic acid, and polyvinylpyrrolidone [43]. 

 

NANOFIBERS CHARACTERIZATION TECHNIQUES[44]: 
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METHODS: 

 

Electrospinning: 
This technique is the most commonly employed to create nanofibers is electrospinning. The invention of 

electrospinning as a workable technique for producing nanofibers may be tracked back to a 1934 patent that 

was made in the process of generating artificial suits by applying a high electric field. 

 

 
Fig 6: Electrospinning equipment 
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The study focused on the effects of electrostatic force on liquids. This evolves into an electrically charged cone 

when it approaches a liquid droplet in a microcapillary. The apex of the cone may emit small jets when the 

charge density rises significantly. The fibers were electrospun while they were placed on a receiver[45]. The 

electrospinning technology is divided into two categories: melt electrospinning and solution electrospinning, 

depending on how the polymer is made [46]. The study focused on the effects of electrostatic force on liquids. 

This evolves into an electrically charged cone when it approaches a liquid droplet in a microcapillary. The apex 

of the cone may emit small jets when the charge density rises significantly.. 

 

 
Fig 7: components of electrospinning equipment 

 

The most popular technology is electrospinning since it is simple, scalable, affordable, and reproducible. 

Electrospun fibers form a vast, interconnected, porous network. Gene transfection has been effectively applied 

to both synthetic and natural polymers. [47].  

Three categories of elements may be identified that influence the properties of nanofibers: parameters related 

to the process, parameters related to the material, and parameters related to the environment. [48, 49]. 

 

TYPES: 

 

Co-axial electrospinning: 

It is mostly used technique in the preparation of nanofibers.  This creates the possible way of nanofibers  . 

These nanofibers are three-dimensionally networked and have been successfully used to transport drugs in 

combination with growth hormones, proteins, antibiotics, and other biological agents [54]. This technique 

preserves the drugs' biological activity while protecting the loaded molecule's core-shell structure.During the 

electrospinning process, the biomolecule functions better when it is inside the jet and is protected from damage 

by the polymer solution outside the jet. [55]. 

 

 
Fig 8: co-axial electrospinning 

 

Multi jet electrospinning: 

Large nanofibers were produced using multi-nozzle electrospinning systems, which increased output and 

coverage. Skin-core structures have purportedly been developed with the use of multi-needle electrospinning. 

Nanofiber filaments were made by two principles [56]. Electrospun nanofiber jets can be generated by an 

electrospinning device with many nozzles or fewer. Polymers can combine nanofiber mats with appropriate 

dispersibility and a uniform thickness using a multi Jet electrospinning device. This technique can also be used 

to produce mixed nanofiber mats made of many polymers [57]. 
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Fig 9: multijet electrospinning 

 

Emulsion electrospinning: 

A rapid, affordable, and promising technique for creating electrospun core-shell nanofibers is emulsion 

electrospinning. This method is adaptable and promising for the nanofiber encapsulation of many medications. 

Emulsion electrospinning was found to be a best technique, in terms of changing the rate at which medications 

are released. [58].  

 

 
Fig 10: Emulsion electrospinning 

 

Bubble electrospinning: 

The family of extremely complex electrospinning techniques has recently expanded to include the ground-

breaking method known as bubble electrospinning. Surface tension in the resulting bubbles is broken by 

electrospinning using electrical forces.The size and shape can affect surface tension. This  method has several 

challenges. A bubble starts to appear on the fluid's surface. But this phenomenon is not very sensitive .The 

method of aqueous solvent bubble electrospinning is employed to create 100 nm-diameter nanofibers [60]. 

 

 
Fig 11: bubble electrospinning 
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APPLICATIONS: 

Nanofibers have a lot to offer when it comes to the administration of pharmaceuticals with a wide range of 

biomedical applications. Recent advancements in nanotechnology may simplify the process of creating 

nanofibers with various forms and release properties. The most promising biological applications include tissue 

engineering, cardiovascular issues, viral disorders. [ 67]. 

 

Cardiovascular diseases: 

A range of synthetic and natural biomaterials have been electrospun to create nanofiber scaffolds containing 

stem cells. [67]. To improve their effectiveness as stem cell transporters, nanofibers have undergone a number 

of alterations, It has also been shown that stem cell-containing nanofibers can treat cardiovascular conditions 

like atherosclerosis and cardiomyocyte regeneration [68]. 

 

Bone regeneration: 
The adaptability of the electrospinning approach helps the scientists are also investigating alternative methods 

for creating scaffolds for bone healing and repair [70,71]. To promote osteogenesis and result in bone 

regeneration, the ideal material needs to be both bioactive and biocompatible. In order to expedite bone 

regeneration, a number of medical researchers have employed electrospun scaffolds to fabricate bone grafts. 

These scaffolds include bioactive compounds that promote osteoblast proliferation and mineralization. For 

bone tissue engineering, a scaffold that is biocompatible, biodegradable, and has the right mechanical 

properties for the environment of the bone should be utilized. 

 

Wound healing: 

A wound is the outcome of external laceration-induced skin trauma. Acute wounds heal faster than chronic 

wounds. The four phases of wound healing include proliferation, remodeling, inflammation, and hemostasis. 

It have recently piqued the tissue engineering because of their biocompatibility, flexibility, and efficient drug 

release, which enable the regeneration of injured tissue [71]. The prior approach to wound care was therapeutic. 

More effective medication release than with traditional therapy is made possible by combining drugs with 

polymers and spinning them into nanofibers [72]. Some even cause healing processes like vasodilation. 

Because collagen electrospun nanofiber scaffolds promote cell growth and penetration into the created matrix, 

they are the most biomimetic alternative to skin. In contrast to electrospun scaffolds made of single polymers. 

[71]. 

 

contraceptives: 

They  are now a practical choice for localized and systemic medication deliveryThe majority of drugs intended 

for vaginal use have been used to address conditions that directly affect the sexual and reproductive health of 

women. The most common uses of hormonal contraception are for the management of bacterial vaginosis, 

luteal phase defect, cervical softening to promote labor, and vaginal infections [72].  

 

RECENT ADVANCEMENTS IN NANOFIBER TECHNOLOGY: 

 

Growth factor delivery: 

Because of the versatility of the electrospinning process, protein growth factors can be incorporated into 

polymer nanofibers, potentially leading to the production of a continuous and regulated release of the growth 

factor. By using two concentric needles instead of one, coaxial electrospinning has allowed proteins to be 

incorporated into the centers of these nanofibers [77]. This method provides protection against the organic 

solvent that dissolves the outer polymer layer. Growth factors have been attempted to be incorporated into 

nanofibers previously, despite the fact that coaxial electrospinning studies have primarily concentrated on 

proteins. [78]. 

 

CONCLUSION AND FUTURE PERSPECTIVES: 

 

A few of the advanced properties that nanofibers displayed were the ambient characteristics are in addition to 

the nanofiber's shape-changing capability. Numerous healthcare-related applications, including as biosensors, 

tissue regeneration, wound healing, and medication delivery, can make use of it [75]. Similar challenges have 

been faced by applications utilizing energy devices based on electrospun nanofibers. These include higher 

energy densities, stability, repeatability, enhanced durability, longer shelf life, ineffective inhibition, and 

insufficient redox stimulation that is both effective and prolonged [74]. 
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In addition to this, each field has flaws specific to its application. Despite their special qualities, nanofibers are 

not biodegradableand , are persistently incompatible with the extracellular matrix of bone. Applications of 

electrospun nanofiber-based energy devices have run into similar issues. Higher energy densities, stability, 

repeatability are a few of these requirements [74].  
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