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Abstract   
   

The task of thyroid nodules classification involves the intricate analysis of 

patterns and features present in ultrasound images. Convolutional Neural 

Networks (CNNs) are being harnessed for thyroid malignancy detection 

due to their exceptional capability to process complex and high-

dimensional medical imaging data effectively. This study introduces a 

meticulously fine-tuned VGG-19 CNN model, designed to cater 

specifically to the multi-classification of thyroid nodules within pre-

processed ultrasound (US) images. Additionally, the model's efficacy is 

evaluated across a spectrum of optimization techniques. Experimental 

results underscore the model's effectiveness, showcasing accuracy rates of 

0.6562, 0.8094, 0.8294, and 0.9201 when employing SGD, ADAgrad, 

RMSprop, and ADAM optimizers, respectively, spanning 150 epochs. 

Importantly, the ADAM optimizer emerges as the key contributor to the 

optimal testing loss, signifying its crucial role in refining the model's 

performance. 

 

Keywords— thyroid nodules classification; fine-tuned; ultrasound; 

optimizers 

 

I. INTRODUCTION 

 

Situated in the anterior neck, just beneath the Adam's apple, the thyroid gland is an essential endocrine organ. 

Its pivotal function involves synthesizing hormones through the utilization of iodine, thereby playing a vital 

role in regulating the body's hormonal balance [1][2]. Thyroid cancer frequently presents as an enlargement 

of the thyroid gland. Tumors that exhibit well-defined differentiation and encapsulation might be detectable 

through touch and could result in alterations in voice quality and challenges in breathing [3]. Thyroid cancer 

ranks as the most common type of endocrine malignancy, accounting for around 2.1% of all global cancer 

cases. The incidence of thyroid cancer has displayed a consistent increase in multiple countries over the past 

few decades [4]. Ultrasound (US) imaging is widely utilized as a diagnostic tool to detect and define the 

features of thyroid nodules. However, not only analyzing entire-slide images proves to be a challenging and 

labor-intensive task for thyroid specialists but also there is possibility of human error. [5][6]. Convolutional 

Neural Networks (CNNs) such as LeNet, AlexNet, NIN, ResNet, GoogLeNet, Xception and VGG [7] offer a 

solution to these challenges by applying deep techniques to ultrasound images. The learning performance of 

neural network model can be influenced on diverse widths and depths by utilizing different optimizers [8]. 

This study suggests employing a pre-trained VGG-19 model for fine-tuning and application of different 

optimizers such as SGD, ADAgrad, RMSprop and ADAM to multi-classifying thyroid tumors due to VGG’s 
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architectural simplicity and capacity to learn intricate image features. This paper illustrates the contribution 

of this task in this context- 

 The pre-trained VGG19 convolutional neural network model is fine-tuned by adjusting filter counts and 

strategically introducing dropout layers with appropriate parameters after the convolutional layers. 

 The fine-tuned VGG19 model is assessed by utilizing Optimizers such as SGD, Adagrad, RMSprop, and 

Adam over the course of 150 epochs. 

 

The fine-tuned model demonstrated remarkable accuracy and exhibited noticeable variations in both accuracy 

and loss function values when different optimizers were employed. 

 

II.  LITERATURE SURVEY 

 

Liang et al. have utilized a multi-organ Computer-Aided Diagnosis (CAD) system, employing convolutional 

neural networks (CNNs), to classify breast and thyroid nodules. They probed the effect of different 

preprocessing methods on diagnostic effectiveness [9]. Wang et al. performed a relative evaluation between 

radiomics and a deep learning-based approach, specifically the fine-tuned VGG-16, to classify thyroid 

nodules [10]. Xie et al. introduced an innovative structural design that integrates deep learning techniques 

with local binary pattern [11]. Liu et al. created a novel combined convolutional neural network (CNN) that 

incorporates information fusion techniques. [12]. Vadhiraj et al. have performed a relative analysis between 

the support vector machine (SVM) and artificial neural network (ANN) classification algorithms [13]. Li et 

al. have built a holistic automated system for recognizing and classifying CT images of thyroid tumors [14]. 

 

Hang has introduced a method that combines conventional and deep features to form a unified feature 

domain, and compared ResNet18 (an 18-layer residual CNN) with Res-GAN. [15]. Peng et al. have created 

ThyNet model, which amalgamated ResNet, DenseNet, and ResNeXt architectures [16]. Qi et al. have 

created a comprehensive network model named Mask-RCNN18. This model incorporated the residual 

network (ResNet) and the feature pyramid network (FPN) for feature extraction, employed the region 

proposal network (RPN) for classification, and integrated bounding box (BB) regression for generating 

Regions of Interest (ROI) to detect the existence of significant extrathyroidal extension (ETE) in cases of 

thyroid cancer [17]. Liu et al. have created ThyNet-LNM, a dedicated deep-learning model for the evaluation 

of Lymph Node Metastasis (LNM) [18]. Ajilisa et al. combined inception modules with squeeze and 

excitation networks to improve the inception network’s recognition accuracy. They also utilized multi-level 

transfer learning approach [19]. 

 

Yang et al. have assessed neural network variance and bias and validated findings with theoretical analysis of 

linear networks [20]. Keskar et al. have explored a hybrid approach that initiates training with an adaptive 

method and transitions to SGD when suitable. They additionally introduced SWATS, a straightforward 

strategy that shifts from Adam to SGD upon fulfilling a triggering condition [21]. Choi et al. have showcased 

how hyperparameter tuning protocol can influence the sensitivity of optimizer [22]. Nado et al. juxtaposed 

outcomes from LARS and LAMB against conventional optimization algorithms like ADAM and Nesterov 

momentum, focusing on large batch sizes [23]. 

 

III. MATERIALS AND METHODS 

 

This part is organized into five primary segments: dataset, data preprocessing, classical VGG-19 Model, 

proposed fine-tuning strategy for the VGG-19 Model, and optimization techniques. The initial segment 

outlines the process of gathering and obtaining ultrasound images. The second part encompasses the 

procedures for preprocessing the images. In the third section, the classical VGG-19 model is expounded 

upon. The fourth segment elucidates the strategy employed to fine-tune the VGG-19 model. Lastly, the fifth 

section Offers a brief summary of the employed optimization techniques. 
 

A. Dataset 

In this study, the Digital Database of Thyroid Ultrasound Images (DDTI), an openly accessible dataset, is 

employed. This dataset comprises the assessment of 347 B-mode thyroid ultrasound images. These images 

were extracted from video sequences of thyroid ultrasounds captured using ultrasound devices, specifically 

TOSHIBA Nemio MX and TOSHIBA Nemio 30. A group of 299 patients with thyroid-related conditions 

had their images evaluated by two experienced radiologists. Each image is associated with a comprehensive 
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annotation and diagnostic description stored in an XML file. Radiologists employed the TIRADS (Thyroid 

Imaging Reporting and Data System) system for patient classification. TIRADS assigns points to different 

ultrasound features of a nodule, allocating additional points to more suspicious characteristics. The overall 

TI-RADS score is calculated by aggregating the feature points across all categories-TR1-normal thyroid; 

TR2- benign; TR3- absence of suspicious ultrasound features; TR4a- presence of a single suspicious 

ultrasound feature; TR4b- presence of 2 suspicious ultrasound features; TR4c- presence of 3 or 4 suspicious 

ultrasound features; TR5- presence of 5 suspicious ultrasound features Descriptions corresponding to the 

images are also incorporated in the XML files. Within this dataset, the experts delineated the boundaries of 

the nodules and annotated distinctive features like veins, trachea, muscles, arteries, and calcifications. 

[24][25]. 

 

B. Data preprocessing 

The images undergo cropping to specific dimensions, maintaining a square shape in the cropped region. 

Subsequently, these images are converted into a single channel to ensure data uniformity, reduce 

dimensionality, and facilitate grayscale-specific processing by transforming RGB images into grayscale 

format. A sequence of additional image processing operations, including thresholding, denoising, contour 

detection, and resizing, is applied to generate processed images suitable for subsequent analysis or use. The 

dataset is partitioned into three categories: a training set comprising 300 ultrasound images, a validation set 

consisting of 13 ultrasound images, and a test set containing 34 ultrasound images. This partitioning forms 

the basis for training, fine-tuning, and evaluating the proposed model. This data separation ensures the 

model's capacity to generalize effectively to data it hasn't encountered before. 

 

C. Data preprocessing 

The images undergo cropping to specific dimensions, maintaining a square shape in the cropped region. 

Subsequently, these images are converted into a single channel to ensure data uniformity, reduce 

dimensionality, and facilitate grayscale-specific processing by transforming RGB images into grayscale 

format. A sequence of additional image processing operations, including thresholding, denoising, contour 

detection, and resizing, is applied to generate processed images suitable for subsequent analysis or use. The 

dataset is partitioned into three categories: a training set comprising 300 ultrasound images, a validation set 

consisting of 13 ultrasound images, and a test set containing 34 ultrasound images. This partitioning forms 

the basis for training, fine-tuning, and evaluating the proposed model. This data separation ensures the 

model's capacity to generalize effectively to data it hasn't encountered before. 
 

D. Classical VGG-19 Model 

The VGG-19 architecture, initially introduced by Simonyan and Zisserman in 2014 [26], is a deep 

convolutional neural network encompassing a total of 19 layers. Its primary objective is to classify images 

into a thousand distinct object classes. This is accomplished through training VGG-19 with the ImageNet 

database, which comprises 1 million images spanning these thousand categories. This architecture has gained 

widespread recognition in image classification tasks due to its effective utilization of multiple 3 × 3 filters 

within every convolutional layer. Fig. 1 illustrates the VGG-19 architecture, featuring 16 convolutional layers 

for feature extraction, followed by three fully-connected layers dedicated to classification. The feature 

extraction layers are grouped into 5 blocks, each succeeded by a max-pooling layer. The model accepts 

224 × 224 dimension image as its input, and the labelof the object present in the image is revealed in the 

model's output [27]. 
 

 
Fig.1. VGG-19 architecture [27] 

 

https://jazindia.com/


Journal of Advanced Zoology 
 

Available online at: https://jazindia.com  32  

E. Fine-tuning strategy for the VGG-19 Model 

Fine-tuning of a CNN model entails modifying the parameters of a pre-trained neural network to align it with 

a particular task or dataset. This process enables the model to leverage the learned features from the initial 

dataset while accommodating the unique attributes of the new task. Furthermore, it accelerates training by 

utilizing pre-existing weights as a foundation. Utilizing a pre-trained model is especially advantageous when 

confronted with a limited thyroid malignancy dataset, as it brings along general knowledge from its original 

training. 

 

The proposed fine-tuned model comprises 16 convolutional layers utilizing ReLU activation, along with 5 

max pooling layers. Additionally, it integrates 2 fully-connected layers employing ReLU activation, 

culminating in an output fully-connected layer using softmax activation. 9 batch normalization layers are 

introduced to normalize activations within mini-batches. Moreover, 11 dropout layers are incorporated to 

strike a balance between accurately fitting the training data and effectively generalizing to unseen data. 

 

In the process of fine-tuning, adjustments are made to the pre-trained VGG-19 model, including modifying 

the number of filters. Filters in early layers are designed to capture rudimentary features, whereas deeper 

layers capture more intricate features. This adjustment enables control over the trade-off between model 

complexity and computational efficiency. Convolutional layers employ the He Normal initialization method, 

which aids in achieving quicker and more stable convergence during training. This initialization method 

ensures initial weights are appropriately scaled to align with the characteristics of ReLU activations. 0.0001 

is set as the learning rate. The categorical cross-entropy loss function is employed for the classification of 

thyroid nodules into multiple TIRADS categories, with the objective of minimizing loss and enhancing 

classification performance. 

 

F. Optimization techniques 

The model is compiled using four different optimizers one-by-one for comparison: SGD, Adagrad, 

RMSprop, and Adam. 

 Stochastic gradient descent (SGD) [28] - It is a variant of the gradient descent optimization algorithm. 

Gradient descent is a technique used to reduce J(θ) an objective function, which depends on a model's 

parameters θ ∈ ℝᵈ. It achieves this by In the opposite direction of the gradient of the objective function 

denoted as ∇θJ(θ), parameters are adjusted. η the learning rate, governs the scale of the steps takento 

approach a (potentially local) minimum. For every training example x(i), a parameter update is executed, 

along with its corresponding label y(i) by Stochastic Gradient Descent as shown in equation 1: 

 

θ = θ − η · ∇θJ(θ; x(i); y(i))                        (1) 

 

 Adaptive Gradient Algorithm (ADAGrad) - Based on the historical gradient information, it adaptively 

scale the learning rate for each parameter. It achieves this by individually maintaining a summation of the 

gradients squared for every parameter. It addresses the challenge of selecting a suitable learning rate for 

different parameters in a model, especially when dealing with sparse data or varying gradients [29]. 

 Root Mean Square Propagation (RMSprop) [30] - It is an optimization algorithm devised to overcome 

certain limitations of conventional gradient descent optimization methods, like the issues of vanishing or 

exploding gradients. For each parameter the learning rate is dynamically adjusted during the training 

process. It is an enhancement of ADAGrad, specifically designed to enhance performance in situations 

involving non-convex optimization. It is grounded in the concept that normalizing the gradient vector by 

the root mean square value of every weight leads to improved learning outcomes. 

 Adaptive Moment Estimation (ADAM) [31] - It is designed for the optimization of stochastic objective 

functions using first-order gradients. It achieves this by leveraging adaptive estimates of lower-order 

moments. Drawing inspiration from momentum, Adam utilizes the moving average of gradients and 

incorporates RMSprop's approach of squared gradient. This amalgamation renders Adam well-suited for 

addressing challenges presented by sparse and very noisy gradients. 

 

IV. EXPERIMENTAL RESULTS 

 

This part offers a thorough analysis of the conducted experiments and their resulting outcomes. It covers 

three essential aspects: the experimental setup, evaluation indexes, and the results and discussion 
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A. Experimental setup 

A computer having Windows 10 operating system and  equipped with a NVIDIA RTX A5000 graphics card, 

offering 24 gigabytes (GB) of GPU memory is used for the experiment. Python 3.10 and Keras 2.3.1, 

utilizing TensorFlow GPU 1.16 as the underlying framework are used for the deep learning environment . 

The model's training spanned 150 epochs, encompassing various stages of learning and refinement. 

 

B. Evaluation Indexes 

Accuracy is employed to assess the overall or average performance of a classification system. It refers to the 

closeness of measurement results to the true value. As presented in equation (2), it measures how well the 

system correctly classifies instances in relation to the total count of instances. 

 

Accuracy =
(TNC+TPC)

(TNC+TPC+FNC+FPC)
    (2)   

 

Where, TNC=True negative cases tally; TPC= True positive cases tally; FNC=False negative cases tally; 

FPC=False positive cases tally 

 

A graph depicting the training and testing loss is employed to serve as a tool for evaluating performance by 

assessing how well the model fits the data. It helps to determine whether the model is overfitting, 

underfitting, or achieving a balanced fit. This graph displays the change in loss values over the course of 

training and testing iterations, offering insights into how well the model is learning and generalizing. 

 

C. Results and discussion 

Table 1 presents a comparative analysis of the accuracy achieved by the fine-tuned VGG-19 model using 

four different optimization algorithms one-by-one - SGD, ADAgrad, RMSprop, and ADAM - across 150 

epochs for the purpose of thyroid malignancy detection. 

 

TABLE I.   

S. No. Optimizer Accuracy 

1. SGD 0.6562 

2. ADAgrad 0.8094 

3. RMSprop 0.8294 

4. ADAM 0.9201 

 

As shown in table 1, the observed accuracy trends among different optimization algorithms reveal insightful 

patterns. The initial utilization of the SGD optimizer resulted in a comparatively lower accuracy of 0.6562, 

indicating its limited efficacy in tailoring the model for the specified task. Subsequently, the ADAgrad 

optimizer exhibited enhancement, achieving an accuracy of 0.8094, underscoring the benefits of adaptive 

learning rates in outperforming the basic SGD approach. Further optimization through the RMSprop 

algorithm yielded an accuracy of 0.8294, emphasizing the advantageous adaptation of learning rates based on 

recent gradient history. Notably, the highest accuracy of 0.9201 was attained by employing the ADAM 

optimizer, showcasing the profound impact of its adaptive learning rates and incorporation of momentum. 

This achievement highlights ADAM's ability to navigate the optimization landscape more adeptly, resulting 

in markedly superior outcomes. 

 

Figure 2 offers a comparative assessment of the training and testing loss curves resulting from the application 

of four distinct optimization algorithms - SGD, ADAgrad, RMSprop, and ADAM - in the fine-tuned VGG-19 

model for the classification of thyroid nodules. Throughout the 150 epochs of training the fine-tuned VGG19 

model with the SGD optimizer, a noticeable gap emerged between the training and testing losses, as depicted 

in Figure 2(a). The training loss, which reflects optimization progress, exhibited a consistent decline with 

each iteration. In contrast, the testing loss, which assesses the model's performance on unseen data, remained 

notably higher, suggesting the possibility of overfitting where the model performs well on training data but 

struggles with generalization. 
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Fig. 2 (a) Training and Testing loss with SGD optimizer 

 

For the models trained with the ADAgrad optimizer (Figure 2(b)) and the RMSprop optimizer (Figure 2(c)), 

the training losses also decreased, albeit with initial fluctuations. However, the testing losses for these models 

stabilized at relatively high values over successive epochs, indicating challenges in achieving good 

generalization. 
 

 
(b) Training and Testing loss with ADAgrad optimizer 

 

 
(c) Training and Testing loss with RMSprop optimizer 
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However, when the ADAM optimizer (Figure 2(d)) is utilized, both the training and testing loss exhibited 

significant reductions. Notably, there was a minimal disparity between the training and testing loss curves, 

suggesting a well-balanced fit. This subtle discrepancy signifies that the model achieved an optimal level of 

generalization, demonstrating the effectiveness of the ADAM optimizer in promoting both efficient learning 

and robust generalization 

 

 
(d) Training and Testing loss with ADAM optimizer 

 

V. CONCLUSION 

 

In this paper,a fine-tuned VGG-19 model for the classification of thyroid nodules using ultrasound images is 

presented. The fine-tuning process not only shortened the training time of the model but also enhanced its 

capability to capture subtle characteristics specific to the medical domain. The model's effectiveness is 

scrutinized across various optimization techniques, and among them, ADAM optimizer stands out with the 

highest accuracy and the least testing loss, making it the most suitable optimizer for this particular task. 
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