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Abstract 

 

We performed a thorough analysis of six single-cell RNA sequencing 

(scRNA-seq) datasets from the 10X Genomics Database in this work. 

We used Principal Component Analysis (PCA) to reduce 

dimensionality, clustering, quality control, normalization, 

identification of high variable features, data preprocessing, and 

Uniform Manifold Approximation and Projection (UMAP) for 

visualization. To better comprehend cellular heterogeneity, we also 

identified marker genes for each cluster and looked at gene correlation 

networks. In comparison to breast cancer datasets, our results showed 

that lung cancer datasets had more edges and marker genes in their 

gene correlation networks. This implies that the lung cancer samples 

have higher levels of molecular complexity and heterogeneity. 

Furthermore, a detailed depiction of the cellular environment that 

highlighted the complex interactions between cell groups was made 

possible by the UMAP visualization. The underlying biology of lung 

and breast cancers is better understood because to the discovery of 

marker genes and the examination of gene correlation networks. The 

found intricacy in datasets related to lung cancer could have 

consequences for comprehending disease subgroups, signaling 

pathways, and overall heterogeneity. This work lays the groundwork 

for future investigations into the molecular details of cancer and the 

development of tailored treatment plans. 

 

Keywords: Normalization, scaling, PCA, UMAP, Clusters, Marker 

Genes, Gene Correlation, Network 

 

1. Introduction 

Single-cell RNA sequencing (scrRNA-seq), has completely changed the study of cellular heterogeneity and 

gene expression patterns. The 10X Genomics Chromium platform has become a prominent instrument for 
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scRNA-seq profiling of individual cells, enabling the deciphering of intricate biological systems. Through the 

process of barcoding individual cells and creating cDNA libraries, this approach allows thousands to millions 

of cells to be processed in parallel, hence facilitating high-throughput single-cell transcriptomics. Droplet-

based partitioning, which is used by the 10X Genomics platform, collects cellular transcriptomes in nanoliter-

sized droplets, making it possible to isolate, barcode, and then sequence individual cells. By using this method, 

scientists can investigate the diversity of cells within tissues, find uncommon cell populations, and define 

signatures of gene expression that are particular to a given cell type with a high degree of sensitivity and 

throughput. 

In cancer research, single-cell RNA sequencing (scRNA-seq) has been a game-changer, providing deep 

insights into the complex dynamics of tumor ecosystems(Imodoye et al., 2024). With the use of this technique, 

researchers can look at individual tumor cells, giving them a thorough grasp of the variety and complexity of 

these structures. In traditional methods, it was possible to miss significant changes between a mixture of cells 

when studying them collectively. But scRNA-seq goes farther, allowing scientists to examine the genetic 

makeup of each individual cell independently. By doing this, researchers can find different cell kinds inside 

tumors, comprehend how each type of cell works differently, and pinpoint particular genetic markers that are 

particular to each type of cell. 

Machine learning (ML) plays a pivotal role in the analysis of single-cell RNA sequencing (scRNA-seq) data, 

especially in the field of cancer research(Vrahatis et al., 2020). Researchers can now interpret enormous 

volumes of complex biological data from scRNA-seq experiments with more ease because to this potent 

computational method. Molecular recognition, molecular signatures, cell type classification, and cancer cell 

behavior prediction are all accomplished through the use of ML algorithms. Significant biological insights are 

extracted from scRNA-seq data by applying machine learning (ML) models, including clustering algorithms 

(k-means, DBSCAN, hierarchical clustering), dimensionality reduction techniques (PCA, t-SNE, UMAP), and 

classification techniques (random forests, support vector machines). 

Seurat is a popular R tool made especially for handling, examining, and displaying results from single-cell 

RNA sequencing(Slovin et al., 2021). It is especially useful in the study of cancer since it offers a set of 

instruments and algorithms designed specifically for scRNA-seq analysis. Seurat gives researchers the ability 

to preprocess scRNA-seq data in the context of cancer by carrying out quality control, normalization, and 

filtering procedures to guarantee high-quality data for further analysis. It makes it easier to identify cell clusters, 

shows how various cell types relate to one another within the tumor ecosystem, and describes the gene 

expression profiles linked to particular cell populations. Principal component analysis (PCA) and t-distributed 

stochastic neighbor embedding (t-SNE), two of Seurat’s dimensionality reduction techniques, enable the 

display of intricate cellular landscapes in cancer tissues. The heterogeneity and spatial structure of cells within 

tumors are revealed by Seurat, which helps reduce the dimensionality of the data while maintaining vital 

biological information. This information is essential for comprehending the course of cancer, immune 

responses, and treatment outcomes. Seurat also integrates with a variety of ML algorithms and statistical 

methods, allowing researchers to find regulatory networks or signaling pathways related to cancer biology, 

perform differential expression analysis, and identify marker genes unique to particular cell types or states. 

The complexity of various cancer types can significantly differ. There are several distinct diseases that make 

up cancer, each with distinct features of its own. Certain cancers may be more complex due to the presence of 

multiple cell types, similar to the multiple colors in a painting. Different cancer types can also exhibit 

differences in the way cells interact and behave within a tumor. This variety is influenced by various factors, 

including the cancer cells’ growth rate, ability to disseminate, and response to various treatments. It is important 

for medical professionals and researchers to comprehend these variations in complexity as it aids in the 

development of efficient methods for the diagnosis, treatment, and management of each kind of cancer. 

In our study, we gathered scRNA-seq datasets representing lung and breast cancer, sourced from publicly 

available the 10X Genomics Database (https://www.10xgenomics.com/products/single-cell-gene-expression). 

Using single-cell RNA sequencing data and Seurat analysis, we compared the complexity of lung and breast 

cancer. To do this, we first clustered similar cells from several datasets. After obtaining these clusters, we 

examined the genes known as marker genes that were highly expressed in each one. We removed the remaining 

gene data for each cluster in order to concentrate on these particular genes. Next, we investigated the 

relationships or connections between these filtered genes within the clusters. We constructed networks as 

dataframes that represented the clusters for each type of cancer using these linkages. We were able to learn 

more about the intricacy of both tumors by looking at and comparing these networks. This method is unique in 
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that it gives us a clearer understanding of the complexity of the cancers by allowing us to directly observe how 

genes interact within specific groups of cells related to the cancers. Other methods may not go as deeply into 

these particular relationships and interactions between genes in different types of cancer. 

2. Methodology 

2.1 Data Preprocessing and Quality Control 

We initially gathered six distinct single-cell RNA sequencing (scRNA-seq) filtered datasets from the 10X 

Genomics Database (https://www.10xgenomics.com/products/single-cell-gene-expression). Of these, three 

were related to breast cancer and three to lung cancer, considering one as a validation dataset for each cancer 

and other two as training datasets. In Table1, we presented a thorough overview of the datasets.  

Cancer 

Type 

Datase

t No. 

Slide Serial 

Number 
Chemistry 

Mean Reads 

per Spot 

Median 

Genes per 

Spot 

Number of spots 

under tissue 
Remark 

Breast 1 
V11J26-

008-B1 
Spatial 3' v1 32,524 5,244 2,518 

Training 

data 

 2 
V19L29-

095-A1 
Spatial 3' v1 72,436 3,671 4,325 

Training 

data 

 3 
V19B23-

014-A1 
Spatial 3' v1 47,223 3,654 4,898 

Validatio

n data 

Lung 1 
V42A20-

354-D1 

Visium V4 Slide 

- FFPE v2 
35,785 6,174 3,858 

Training 

data 

 2 
V52Y10-

286-B1 

Visium V5 Slide 

- FFPE v2 
1,36,379 10,087 6,195 

Training 

data 

 3 N/A 
Single Cell 5' 

R2-only 
26,051 1,459 2,616 

Validatio

n data 

Table 1. Overall description of the cancer datasets 

We began our analytical pipeline by importing each dataset into R studio and converting it into a Seurat Object 

in order to enable comprehensive analysis. Each dataset was transformed into a Seurat Object independently, 

meeting the requirements of at least five cells and two hundred features. A Seurat Object, which functions as 

a structured container to store and handle single-cell RNA sequencing (scRNA-seq) data within the R 

environment, was created using the CreateSeuratObject() function in Seurat (Ji et al., 2019). By arranging the 

unstructured datasets, it produces a structured Seurat Object. The elements that comprise the Seurat Object are 

gene expression counts, cell metadata, gene metadata, and other pertinent data. Thus the metadata of the Seurat 

object is divided into four columns: the first column lists the cell names; the second column contains the 

dataset’s identification; the third and fourth columns list the number of RNA molecules and genes that are 

present in each dataset cell. The function generates the Seurat Object by organizing and combining these 

dissimilar components. This object is subsequently utilized in other research projects like as quality control, 

normalization, clustering, dimensional reduction, and differential gene expression analysis (Slovin et al., 2021). 

This made it possible for us to concentrate on data on single-cell gene expression from several cancer datasets. 

Each dataset was transformed into a Seurat Object independently, meeting the requirements of at least five 

cells and two hundred characteristics. 

Seurat included a quality control step to verify the general quality of the datasets. We omitted this step as we 

used filtered datasets from the 10X database and thought their quality was already good. 

Normalization 

We modified the gene expression data in the Seurat object using the normalizing approach in order to enhance 

the distribution’s symmetry and lessen the impact of extraordinarily high expression levels. To ensure data 

comparability and stabilize variance, we applied log-normalization to normalize the dataset’s Seurat Object 

(Stuart et al., 2019). It became simpler to compare the expression values between cells by compressing the data 

and lowering the dynamic range of expression. In our investigation, we performed log normalization using 

Seurat’s NormalizeData() tool (Hrault et al., 2021). This procedure was crucial to producing a well standardized 

and reliable dataset, which enabled us to do perceptive downstream analysis and evaluate the results. By 

employing log normalization, we were able to effectively address the issues brought about by varying 

expression levels while also ensuring that the data was appropriately scaled for further examination. 
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Identification of high variable features 

We took the top 3000 high variable characteristics out of the dataset after normalizing it (Fig.1). Finding highly 

variable genes is similar to highlighting the most important characteristics within a large dataset. By focusing 

on these highly variable genes, the analysis is made simpler rather than having to sort through all the genes. 

These genes are crucial for distinguishing between various cell types and reflect notable cell-to-cell changes. 

To enable a more effective and comprehensible downstream analysis, including PCA, grouping, and 

visualization (UMAP), we concentrated on the highly variable ones. Following the log-normalization of the 

scRNA-seq data, we used Seurat’s FindVariableFeatures() function with the selection method set to variance 

stabilizing transformation (VST) to identify genes that exhibit significant variation in their expression levels 

among different cells (Salazar-Martín et al.,2023). 

Scaling data 

We initially employed log-normalization to control the expression distribution’s complexity and stabilize 

variance. We utilized scaleData to equalize expression within cells following log-normalization in an attempt 

to lessen technical variations (Stuart et al., 2019). This phase ensured that each gene is expressed consistently 

in all cells, which was necessary for precise analyses like clustering. Scaling made it easier to find patterns that 

have biological significance by increasing the consistency of the gene contribution to variability. Reducing 

technological noise and improving the representation of actual biological differences in gene expression levels 

was our aim while scaling. Both scaling and log-normalization helped to clean up the data in a complementary 

way, improving analytical precision and revealing more about the interactions between genes and the behavior 

of cells. As such, our methodical approach ensured that data quality was optimized for robust biological 

interpretations. To scale our gene expression data inside individual cells using the single-cell RNA sequencing 

(scRNA-seq) dataset, we utilized Seurat’s scaleData function (Stuart et al., 2019). This function aims to achieve 

centered and scaled gene expression levels by applying mathematical procedures to each cell. Typically, these 

actions include dividing each cell by the standard deviation (or another scaling factor) after obtaining the mean. 

To ensure more accurate downstream analysis and less technical variability, the function standardizes the gene 

expression statistics. 

2.2 Dimensionality reduction 

Principal Component Analysis (PCA) 

In specifically, we performed linear dimensionality reduction using Principal Component Analysis (PCA) on 

the top 3000 variable features that were found in the preceding stage. This was a critical step that made it 

possible to simplify the dataset without losing any of its vital biological information. Through PCA, we were 

able to identify main components that represent the most important causes of variance in gene expression. We 

reduced the linear dimensionality of the data using the Principal Component Analysis (PCA) method provided 

by Seurat’s RunPCA() function (Zhong et al., 2021). The top 3000 variable characteristics of every dataset that 

we had previously extracted were the targets of the PCA calculation. Elbow plot (Fig.2) was used to determine 

the optimal number of main components to retain (Table2) for further analysis, such as clustering, visualization, 

or extra dimensionality reduction approach (UMAP). With regard to the number of PCs in a dataset, the elbow 

plot displays the standard deviation. The standard deviation values on the plot demonstrated a steady drop with 

each new principle component. My goal was to locate this curve’s “elbow,” or the point at which the standard 

deviation dropped noticeably more slowly. 

Clustering 

It was crucial to categorize cells based on comparable expression profiles after applying principal component 

analysis (PCA) to decrease the dimensionality of our single-cell RNA sequencing dataset and identify the most 

meaningful principal components. Through the technique of clustering, we were able to classify cells into 

distinct groups or clusters according to the patterns of gene expression. Finding and differentiating between 

cell groups with similar expression profiles or biological characteristics was the aim of this clustering step. 

Using reduced dimensions (derived from PCA) to cluster cells based on expression similarity, we tried to find 

innate cellular groupings or groups within the dataset (Fig.3). Several mathematical calculations are used in 

this clustering method, which makes use of Seurat’s FindNeighbors() function (Grabski et al.,2023). 

The FindClusters() function was used following the creation of a neighborhood network using FindNeighbors() 

(Grabski et al.,2023). This function divides cells into distinct clusters based on their proximity to each other in 
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the reduced-dimensional space. We implemented the Louvain algorithm as a clustering tool on the generated 

neighborhood graph. The Louvain algorithm optimizes the network structure to identify cohesive communities 

or cell clusters. Maximizing modularity, a measure of the quality of cluster assignments made inside the 

network, is the aim of clustering algorithms. Modularity is a measure of the number of intra-cluster connections 

relative to the number of inter-cluster connections. The resolution input is used as a tuning option by Seurat’s 

FindClusters() function to alter the cluster identification granularity (Grabski et al.,2023). We individually 

changed the resolution parameter for each dataset to create six distinct clusters in each set (Table2). This change 

was intended to result in a more complete data segmentation, which would enable a more comprehensive 

analysis of both datasets. These six clusters from each dataset will serve as the foundation for our future studies, 

allowing us to look more closely at the complexity both inside and across the datasets. 

Cancer Type Dataset No. Number of cells Number of genes Number of PCs Resolution parameter Remark 

Breast 1 2518 15946 12 0.3 Training data 

 2 4169 19673 9 0.3 Training data 

 3 4895 20227 12 0.15 Validation data 

Lung 1 3830 18053 10 0.15 Training data 

 2 6195 18067 12 0.2 Training data 

 3 2521 19708 14 0.1 Validation data 

Table 2. Number of cells, genes, number of PCs and the resolution parameter for cluster formation in the 

datasets after converting into seurat object. 

Uniform Manifold Approximation and Projection (UMAP) 

After dividing cells into groups based on the levels of gene expression using clustering approaches that came 

after PCA, we searched for a more complex and nuanced representation of the data. While PCA was successful 

in decreasing dimensions and capturing key sources of variation, UMAP provided an alternate perspective by 

highlighting non-linear interactions and preserving both local and global patterns within the data. Unlike PCA, 

UMAP excels at capturing the complex relationships and multidimensional structures found in high-

dimensional data. It offers a more thorough depiction of the cellular landscape by projecting the cells into a 

low-dimensional space while preserving their intrinsic structure and relationships with one another based on 

comparable gene expression patterns. After clustering, we used UMAP to provide a more comprehensive 

picture of the cellular heterogeneity inside and between the identified clusters. We were able to investigate and 

depict the interactions between cell groups in a more thorough and physiologically meaningful way thanks to 

our non-linear reduction approach. For our scRNA-seq datasets, we used Seurat’s RunUMAP() tool to perform 

UMAP (Uniform Manifold Approximation and Projection) (Massier et al., 2023). There are several 

downstream investigations that may be conducted using the reduced-dimensional coordinates obtained by 

UMAP. These include grouping, identifying marker genes, and studying cellular transitions and heterogeneity. 

We assigned numbers ranging from 0 to 7 to each of the eight clusters, so naming them. 

2.3 Marker genes identification 

We discovered the marker genes inside the clusters to gain a better understanding of the distinct characteristics 

and identities of different cell types. Determining the genetic fingerprints that characterize each cluster’s 

identity and function required first identifying and then removing marker genes from within each cluster. 

Important insights into the many biological processes and traits of different cell populations in our dataset were 

obtained from these processes. To find specific markers in our dataset that are required for certain groups or 

clusters, we utilized Seurat’s FindConservedMarkers() tool (Prazanowska et al.,2023). Marker genes serve as 

genetic fingerprints that distinguish different cell types or subgroups based on patterns of gene expression. 

These markers provided precise cell identification, revealing biological variety, providing functional insights, 

and guiding more research. The FindConservedMarkers() function searches for genes that have differential 

expression in a particular cluster relative to other clusters or groups, often assessing one group against all other. 

2.4 Correlation based network dataframe analysis 

The first step in our procedure was to separate and collect the gene expression data unique to each cluster in 

the dataset we were examining. In order to analyze the distinct gene expression patterns of various cell 

groupings, or clusters, we isolated the gene activity profiles that are particular to those clusters. We 

concentrated on unique genes, known as marker genes, that were strongly expressed and connected to each 

cluster. We condensed our data by retaining only this particular gene information for each cluster and 

eliminating the others in order to have a better understanding of these crucial genes. Therefore, we were 
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interested in understanding the interactions or cooperative mechanisms among these important genes within 

each cluster. We looked at the degree of relationship between these filtered genes inside the clusters to 

investigate this. This required figuring out a metric known as correlations, which gave us insight into the 

strength of the connections between these genes and whether or not their activity altered simultaneously. 

In order to create the correlation, the rcorr() function from the R Hmisc library was utilized (Alexa et al., 2022). 

For pairwise comparisons between the marker genes inside each cluster, this function effectively computed the 

Pearson correlation coefficients(𝑟)and their corresponding values. 

𝑟 =
∑(𝐴𝑖−𝐴̅)((𝐵𝑖−𝐵̅)

√Σ(𝐴𝑖−𝐴̅)2Σ(𝐵𝑖−𝐵̅)2
 

For the ‘𝑖-th’ sample, the expression levels of Gene 𝐴 and Gene 𝐵 are, respectively, 𝐴𝑖 and 𝐵𝑖. 

The means (averages) of Gene 𝐴 and Gene 𝐵's expression levels across all samples are represented by the 

numbers 𝐴̅ and 𝐵̅. 

To determine if a correlation coefficient is significant, the function used the following formula to get the 𝑡-

statistic: 

𝑡 = 𝑟 × √
𝑛 − 2

1 − 𝑟2
 

𝑟 = Pearson correlation coefficient 

𝑛 = Number of genes 

The cumulative distribution function (or CDF) of the 𝑡-distribution is used in the following mathematical 

equation to get the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 from the 𝑡-statistic: 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑃(𝑇 ≥ |𝑡| 𝑜𝑟 𝑇 ≤ −|𝑡| ) 

Where: 

|𝑡| = Absolute value of the calculated 𝑡-statistic. 

𝑇 = Random variable following the 𝑡-distribution with 𝑛 − 2 degrees of freedom. 

𝑃(𝑇 ≥ |𝑡| 𝑜𝑟 𝑇 ≤ −|𝑡| ) = Probability of observing a 𝑡-value as extreme as |𝑡| or more extreme in a two-tailed 

test. 

We chose a threshold of p < 0.05 for significance across all datasets in order to provide a strict standard. We 

were able to find statistically significant gene correlations within each cluster by using this level. 

In the initial phase, we constructed a correlation matrix depicting pairwise correlations among genes inside a 

certain cluster, where the correlation coefficient ‘𝑟’ between. We make sure that no gene is linked with itself 

by setting the diagonal elements of the correlation matrix to zero in order to remove self-correlations. In order 

to distinguish non-correlation values, a placeholder value of 25 was used to replace the upper triangle members 

while preserving diagonal symmetry. The gene correlation matrix was then transformed using the ‘melt()’ 

function into a long or melted format, which preserved information about gene pairings and their correlation 

values while transforming rows and columns into a two-column format. This produced a new data frame in 

which each row represents a gene pair (‘variable1’ and ‘variable2’) together with the corresponding 

significance value. After using filtering procedures to eliminate superfluous items, such as self-correlations 

and placeholder values, a revised dataset emphasizing noteworthy correlations was produced. The method then 

moved on to the next step, which was building the correlation network. First, to find gene pairings with 

substantial correlations, the correlation data was filtered using a threshold of.5. From this filtered correlation 

data, an adjacency list useful for building the network was subsequently produced. Every row in this list 

denoted an edge between two genes, indicating a strong connection between these gene pairs that served as the 

foundation for the network. Following the generation of adjacency lists derived from the filtered correlation 

data, we transformed these lists into structured data frames, creating network data frames essential for our 

cancer complexity analysis. These network data frames were specifically structured to encode the relationships 
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between genes exhibiting significant correlations within the context of cancer datasets. We analysed network 

dataframes of different clusters of all the  cancer datasets to understand the complexity in the datasets. 

All additional clusters in the specific cancer dataset have been processed using the aforementioned processes. 

To create networks based on gene correlation for every cluster, we used many R packages, such as reshape2, 

tibble, and dplyr. 

3. Results and Discussion 

3.1 Variable features and Principal components identification 

We figured out top 3000 variable features in each cancer dataset. We mentioned top 5 high variable features in 

each cancer dataset in the Table3. We used Seurat’s FindVariableFeatures() function with the selection method 

set to variance stabilizing transformation (VST) to identify genes that exhibit significant variation in their 

expression levels among different cells. We then used these top 3000 variable features in the PCA for the 

number of PCs calculation. We reduced the linear dimensionality of the data using the Principal Component 

Analysis (PCA) method provided by Seurat’s RunPCA() function (Zhong et al., 2021).  

 
Fig.1: Plots showing high variable features(genes) present in the datasets. (a) Breast cancer Dataset 1 (b) Breast 

cancer Dataset 2 © Breast cancer Dataset 3 (d) Lung cancer Dataset 1 (e) Lung cancer Dataset 2 (f) Lung 

cancer Dataset 3 
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Fig.2: Elbow plots showing PC wise standard deviations present in the datasets. (a) Breast cancer Dataset 1 

(b) Breast cancer Dataset 2 © Breast cancer Dataset 3 (d) Lung cancer Dataset 1 (e) Lung cancer Dataset 2 (f) 

Lung cancer Dataset 3 

We used Elbow plot (Fig.2) to determine the optimal number of main components to retain (Table2) for further 

analysis, such as clustering, visualization, or extra dimensionality reduction approach (UMAP). With regard to 

the number of PCs in a dataset, the elbow plot displays the standard deviation. The standard deviation values 

on the plot demonstrated a steady drop with each new principle component. My goal was to locate this curve’s 

“elbow,” or the point at which the standard deviation dropped noticeably more slowly. The number of PCs we 

figured out in each dataset are mentioned in the Table2. 
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Cancer Type Dataset No. 1 2 3 4 5 Remark 

Breast 1 SPP1 IGKV4-1 IGLV3-1 IGHD IGHM Training data 

 2 CPB1 IGKC DCD PI16 CILP Training data 

 3 ALB IGHM IGLC1 IGHA1 SCGB1D2 Validation data 

Lung 1 SCGB1A1 BPIFB1 CFAP157 SFTPC IGHG3 Training data 

 2 SFTPB SFTPC MYH11 IGKC SFTPA1 Training data 

 3 SPRR2D SFTPB WFDC2 SCGB3A2 SPRR1A Validation data 

Table 3. Top 5 high variable genes present in the datasets 

3.2 Cluster visualization 

 

Fig.3: Plots showing six different clusters obtained after performing PCA in the datasets. (a) Breast cancer 

Dataset 1 (b) Breast cancer Dataset 2 © Breast cancer Dataset 3 (d) Lung cancer Dataset 1 (e) Lung cancer 

Dataset 2 (f) Lung cancer Dataset 3 

The FindClusters() function was used following the creation of a neighborhood network using FindNeighbors() 

(Grabski et al.,2023). This function divides cells into distinct clusters based on their proximity to each other in 

the reduced-dimensional space. The resolution input is used as a tuning option by Seurat's FindClusters() 

function to alter the cluster identification granularity (Grabski et al.,2023). We individually changed the 

resolution parameter for each dataset to create six distinct clusters in each set (Table2). This change was 

intended to result in a more complete data segmentation, which would enable a more comprehensive analysis 

of the datasets. These six clusters from each dataset served as the foundation for our future studies, allowing 
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us to look more closely at the complexity both inside and across the datasets. Fig.3 provides us the visualization 

of clusters obtained after performing PCA technique. 

 

 

Fig.4: Plots showing six different clusters obtained after performing UMAP in the datasets. (a) Breast cancer 

Dataset 1 (b) Breast cancer Dataset 2 © Breast cancer Dataset 3 (d) Lung cancer Dataset 1 (e) Lung cancer 

Dataset 2 (f) Lung cancer Dataset 3 

We used UMAP to provide a more comprehensive picture of the cellular heterogeneity inside and between the 

identified clusters. We were able to investigate and depict the interactions between cell groups in a more 

thorough and physiologically meaningful way. For our scRNA-seq datasets, we used Seurat’s RunUMAP() 

tool to perform UMAP (Uniform Manifold Approximation and Projection) (Becht et al., 2019). Fig.4 provides 

us the visualization of clusters obtained after performing UMAP. 

3.3 Marker genes identification 

To find specific markers in our dataset that are required for certain groups or clusters, we utilized Seurat’s 

FindConservedMarkers() tool (Prazanowska et al.,2023). Marker genes serve as genetic fingerprints that 

distinguish different cell types or subgroups based on patterns of gene expression. These markers provided 
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precise cell identification, revealing biological variety, providing functional insights, and guiding more 

research. The FindConservedMarkers() function searches for genes that have differential expression in a 

particular cluster relative to other clusters or groups, often assessing one group against all others. We 

determined the number of marker genes in each cluster of every dataset and figured out the result that the 

number of marker genes obtained in the lung cancer datasets were pretty high as compared to the breast cancer 

datasets(Table4). 

In order to fully describe and comprehend the intricate web of gene expression found in biological datasets, 

marker genes are essential. By acting as markers or signatures connected to particular cell types or 

subpopulations, these genes let scientists recognize and distinguish between various cell types. The quantity of 

marker genes found in datasets derived from various tissues or illnesses can shed light on the intrinsic 

heterogeneity or variety present in those samples. More marker genes are frequently indicative of a more 

complex and diverse cellular makeup. Variations in the microenvironment or the existence of unique cell types 

or subtypes could be the cause of this variety. In our analysis, a higher number of marker genes indicated a 

greater heterogeneity or diversity in the cellular composition of the lung cancer samples.  

Cancer Type Dataset No. Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Remark 

Breast 1 1896 292 2962 647 2000 2013 Training data 

 2 1267 165 374 565 470 471 Training data 

 3 1865 1317 1114 1396 466 1250 Validation data 

Lung 1 3085 3726 534 2441 4302 4248 Training data 

 2 629 434 258 2741 493 4586 Training data 

 3 2814 3148 2064 4133 3500 3254 Validation data 

Table 4. Number of marker genes present in the identified clusters of the datasets 

We showed the number of marker genes present in the clusters of different datasets of breast and lung cancer 

by using bar plot(Fig.5). These bar plots helped us to compare the marker genes distribution visually in different 

datasets. We observed that the marker genes in lung cancers were comparatively higher than the breast cancer 

datasets. 

 
Fig.5: Bar Plots showing distribution of marker genes in the six different clusters in each dataset. (a) Breast 

cancer Dataset 1 (b) Breast cancer Dataset 2 © Breast cancer Dataset 3 (d) Lung cancer Dataset 1 (e) Lung 

cancer Dataset 2 (f) Lung cancer Dataset 3 
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3.4 Gene correlation networks analysis 

We formed gene correlation network dataframe for each cluster at gene correlation threshold of 0.5 as described 

in the methodology section. These network dataframes highlight genes with an absolute correlation value 

greater than 0.5 and depict connections between genes through edges. The presence or absence of edges in the 

network dataframe indicates whether there is a correlation between the respective genes. This approach enables 

the visualization and exploration of relationships within and between gene clusters, offering valuable insights 

into the co-expression patterns and potential functional associations among genes in our analysis. We 

determined how many genes(Table4) and edges(Table5) were in each cluster’s network by counting them in 

the network dataframe. A noteworthy finding surfaced during analysis: compared to the breast cancer datasets, 

the lung cancer datasets showed noticeably more edges and genes. 

In particular, a higher number of edges in lung cancer networks indicates a more complex interaction and 

relationship between genes. The molecular landscape of lung cancer may exhibit greater levels of coordination 

and potential regulatory connections, as indicated by the links between genes becoming increasingly 

complicated. Larger gene counts and a more extensive network of edges in the lung cancer networks suggest 

that the disease include a variety of molecular subtypes, complex signaling pathways, or higher levels of 

heterogeneity among lung cancer samples. This increased complexity might have an impact on our 

comprehension of the biology underlying lung cancer and could guide future research into the disease’s 

molecular underpinnings. 

Cancer 

Type 

Dataset 

No. 
Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Remark 

Breast 1 102 83 356 105 49 1584 Training data 

 2 4 5 31 30 190 35 Training data 

 3 69 82 114 75 29 425 Validation data 

Lung 1 266 49 221 422 1294 1334 Training data 

 2 20 16 138 2536 570 981 Training data 

 3 358 648 519 2919 3819 2800 Validation data 

Table 5. Number of genes found in the networks of six different clusters of each dataset 

Cancer Type Dataset No. Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Remark 

Breast 1 191 102 999 257 44 6674 Training data 

 2 2 3 41 34 552 46 Training data 

 3 83 116 154 119 17 338 Validation data 

Lung 1 985 99 839 2018 18295 1321 Training data 

 2 14 11 632 118070 6102 7269 Training data 

 3 1085 4501 3506 15117 22507 7404 Validation data 

Table 6. Number of edges found in the networks of six different clusters of each dataset 

We analysed six distinct single-cell RNA sequencing (scRNA-seq) cancer datasets where three datasets were 

related to breast cancer and three to lung cancer gathered from 10X Genomics Database. Among the datasets 

of each cancer type, one was validation dataset and the other two were training datasets. The results obtained 

in the training datasets were verified using the validation datasets. We thus compared the lung and breast cancer 

datasets by analysing them visually and also analytically.  

4. Conclusion 

Finally, our work explored the molecular subtleties of lung and breast malignancies using sophisticated single-

cell RNA sequencing (scRNA-seq) analysis. We processed six different datasets from the 10X Genomics 

Database, three for lung and three for breast cancer, using a strict analytical approach. We used a rigorous 

preprocessing, quality control, normalization, Principal Component Analysis (PCA) to reduce dimensionality, 

clustering, and Uniform Manifold Approximation and Projection (UMAP) for visualization. In order to 

understand the intricate landscape of gene expression in these malignancies, we subsequently discovered 

marker genes and investigated gene correlation networks. A noteworthy finding was that the gene correlation 

networks of lung cancer datasets had more edge and marker genes than those of breast cancer datasets. This 

discrepancy points to a more complex molecular profile and higher variation among the lung cancer samples. 

The presence of many cell types or subpopulations, potentially indicating different cancer subtypes or 

differences in the tumor microenvironment, is suggested by the abundance of marker genes. Our 
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comprehension was deepened by the use of UMAP for visualization, which made clear the intricate linkages 

and multidimensional structures present in high-dimensional data. By using this method, we were able to 

project cells into a low-dimensional environment while maintaining global and local patterns based on 

similarity in gene expression. The generated visuals offered a detailed depiction of the variety of cells both 

inside and amongst the detected clusters. The intricacy of lung cancer datasets was highlighted even further by 

our examination of gene correlation networks. These networks’ greater edge counts indicate more complex 

gene-to-gene interactions and relationships. Numerous molecular subtypes, intricate signaling pathways, or 

greater variability amongst lung cancer samples could all be responsible for this complexity. The results 

indicate that lung cancer, as represented by our datasets, might have a more complex genetic landscape than 

breast cancer.  

In conclusion, by offering a thorough examination of the gene expression patterns in lung and breast tumors, 

our study adds to the expanding corpus of knowledge pertaining to cancer biology. The discovered gene 

correlation networks and marker genes provide information about the molecular mechanisms and heterogeneity 

that underlie these malignancies. This data may have implications for personalized medicine by facilitating the 

creation of focused treatment plans that are customized to each patient's unique molecular signature. To 

improve clinical outcomes and expand our knowledge of cancer biology, it will be imperative to do additional 

research on the identified marker genes and intricate gene interactions. 
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