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Abstract   
   

Growing concerns about food supply sustainability and security are driving 

exploration of eco-friendly approaches in agriculture. One promising 

method involves using microbe-based biofertilizers – beneficial bacteria 

that enhance nutrient uptake and promote plant growth in soil and plants. 

Nanotechnology is also valuable, as nanoparticles can boost biofertilizer 

effectiveness in natural environments. Review examines how nanoparticles 

affect plant bacteria for sustainable agriculture. 

 

Keywords -Nanobiofertilizers, Nanoparticles, Plant growth promoting 

bacteria(PGPB) 

 

Introduction 

 

Economic progress and population growth boost food demand surge (Ma et al.,2018). Excessive chemical use 

harms ecosystems; seeking eco-friendly alternatives is vital (Gurikar et al.,2016). Utilizing bio fertilizers, bio 

pesticides, and eco-friendly water practices can enhance agricultural yields while   preserving soil health 

(Glick., 2020). Bacteria in roots and within plants aid growth, enhance nutrients, protect (Castro et al., 2018; 

Batista et al.,2018). Microorganism-based bio fertilizers proved economically viable for organic farming, 

leading to a 12% market expansion (Meticulous Market Research., 2017). Nanotechnology has gained 

prominence in precision agriculture, aiming to address challenges faced by microbial inoculants in the field. 

By utilizing nanoparticles (NPs) with unique properties and smaller sizes, it seeks to improve bio fertilizers' 

stability, storage, and overall effectiveness (Duhan et al., 2017). Utilizing a variety of nanoparticles, 

nanotechnology improves plant characteristics and increase PGPB potential (Zand et al.,2020). Nanomaterials 

are seen as humanity's future (Singla et al., 2020). 

 

Nanotechnology for organic farming 

 

Nanotechnology utilizes materials at the nanoscale, offering unique properties like quantum confinement and 

enhanced bioactivity, adhesion, and reactivity (Gutiérrez et al.,2011). Nanotech offers effective solutions for 

sustainable agriculture, addressing safety, security, disease, and climate (Prasad et al.,2017). Scientists are 

investigating nanomaterials as a means to boost agricultural efficiency. Nanotechnology finds applications in 

seed science, nanofertilizers, water management, biosensors, and more. Smart agricultural systems utilizing 
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nanomaterials promote nutrient absorption, precise molecule delivery, disease detection and environmental 

protection (Koul., 2019, Bhattacharyya et al.,2016). Nanoencapsulated bacteria in smart seeds lower planting 

rates, ensure better seedling growth, and boost crop production. They sprout in ideal conditions. (El-Ramady 

et al., 2018). Nanomaterials aid crop genetic engineering, monitor plant responses, and improve crop 

productivity, adapting to climate change (Figure 1). 

 

 
 

Biofertilizer formulations using nanomaterials 

 

PGPB support plant health by absorbing nutrients, regulating growth hormones, limiting pathogens and 

promote resistance in plants (Gond et al., 2015, Glick., 2020, Srivastava et al.,2016). Biofertilizers serve as 

carriers of beneficial microbes, enhancing nutrient availability in plants. These formulations, containing live 

microorganisms, are widely utilized in agriculture for nitrogen fixation, phosphorus and potassium 

solubilisation and biocontrol purposes (Sahu and Brahmaprakash., 2016, Kour et al.,2020). Biofertilizers are 

eco-friendly, sustainable, enhance soil fertility, and benefit farmers (Thomas and Singh., 2019). Frequent 

inoculants include Azospirillum, Acetobacter, Azotobacter, Pseudomonas - aiding plant growth (Kumar and 

Verma., 2018). NPs' surface area and negative charge influence microorganism-NP interactions, while positive 

charges on cells enhance adhesion (Kurdish., 2019). Particles and bacteria interact via electrostatic attraction 

and chemical changes on bacterial surfaces. Key biomolecules involved are LPS, LTA, proteins, and 

phospholipids, affecting NP transportation into cells without a defined model (Palmqvist et al., 2015, Shukla 

et al.,2015). NPs enhance PGPB's ability to inhibit phytopathogens. PGPB gain an advantage in habitats and 

resources, as NPs increase bacterial cell numbers. Nanomaterials boost beneficial bacterial traits like nitrogen 

fixation and secondary metabolite synthesis (Figure 2). For example, ZnO NPs enhance siderophore formation 

in Pseudomonas chlororaphis, CuO NPs increase IAA synthesis, and AgNPs improve Nitrosomonas europaea's 

nitrogen-fixing ability by upregulating amoA1 and amoC2 genes. Nanomaterials effects bacteria, influencing 

their metabolism through ion interactions, gene expression changes, and cell membrane modifications. 

Beneficial bacteria combat plant-harming microbes through competition or antimicrobial production (Quecine 
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et al.,2014). Research gaps exist regarding molecular interactions between bacteria, NP and plants promoting 

development. Limited knowledge on PGPB-related nanomaterials' impact on plant molecular activity. 

Physiological studies reveal larger NPs concentrate in apoplastic space, while smaller NPs can move through 

plasmodesmata in the symplast (Jha and Pudake.,2016).  Plant roots produce reactive oxygen to obtain nitrogen 

from symbiotic bacteria, engaging in microbivory. Bacteria enter the plant, providing nutrients that the host 

absorbs through an oxidative process. Some NPs may remain in plant tissues during this cycle (Quecine et 

al.,2014). 

 

 
In this process, NPs on bacteria may persist in plant materials, according to our hypotheses. 

 

SiO2nanoparticles 

Silica NPs are widely used due to their inexpensive synthesis and versatile properties (Jeelani et al., 2020). 

Silica NPs facilitate controlled-release systems, enhancing molecule efficiency and specificity (Xu et al.,2019).  

Silica nanoparticles enhance bioremediation and maize seed viability (Liang et al.,2020). Nanosilica enhanced 

maize's PGPB effects. Nanosilica boosts tomato growth significantly (Siddiqui and Al-Whaibi.,2014). 

Encapsulated bacteria improved UCB-1 pistachio growth by enhancing root length and micropropagation in 

this study. Researchers found that using silica nanoparticles from Equisetum telmateia at 0.05 and 0.07 ppm 

doses enhanced the growth of Pseudomonasstutzeri and Mesorhizobium spp., resulting in significant 

improvement in land cress plant growth with increased soil nutrients. SiO2 NPs boost plant-bacteria interaction 

(Kurdish.,2019). 

 

TiO2 nanoparticles 

Anatase, rutile, and brookite are the three different crystalline phases of TiO2. The first two is the most typical 

and feature tetragonal formations. The popular techniques hydrothermal and sol-gel, regulate nanoparticle size 

and form. Altering pH, temperature, and solvent modifies material properties . TiO2 nanoparticles enhance 

PGPR attachment to roots, increasing wheat growth (Timmusk et al., 2017). Titanium nanoparticles shielded 

plants from the fungus Alternariabrassicae and assisted the plant-growth-promoting bacterium 

Bacillusamyloliquefaciens in attaching to the roots of oilseed rape (Brassicanapus). Titanium NPs improved 

broad beans in saline soil, aiding crops (Palmqvist et al., 2015). 

 

ZnO nanoparticles 

The n-type semiconductor zinc oxide has good chemical and photothermal stability, nontoxicity, 

biocompatibility in its nanoparticles. ZnO nanoparticles can be produced using physical and chemical methods. 

Two common physical techniques are laser ablation and physical vapor deposition (Laurenti et al., 2015). Zinc 
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oxide nanoparticles hindered bacterial IAA production. Concentration affected results. Phosphate 

solubilization was also blocked. Siderophore production increased with NP concentration (Haris and Ahmad., 

2017). ZnSO4 NPs and Pseudomonas spp. PGPB enhanced rice yield and nutrients. Increased plant height, 

nodule count, and grain weight were caused by ZnO NPs injected into soybean plants using PGPR. According 

to (Seyed Sharif and Khoramdel., 2016), Higher zinc oxide, more pods, grains, and nodules. 

 

Other nanoparticles 

CuO NPs improved wheat's (Triticumaestivum) nitrogen fixation, gene expression. Gold nanoparticles exhibit 

chemical inertness, resist surface oxidation, and are nontoxic in nature. As the AuNP concentration increased, 

they enhanced the growth of beneficial bacteria, showing their potential in nanobiofertilizers (Shukla et al., 

2015). Cowpea responded positively to growth factors and nodulation, Brassica to shoot parameters, wheat 

had a detrimental impact. Cowpea and wheat bacteria, 50 ppm impacted P solubilizers, but 75 ppm decreased 

N fixers and siderophore producers. Brassica's diversity was unaffected by either concentration (Shukla et al., 

2015). 

 

Nanoparticles' toxicological effects on microorganisms that promote plant growth 

 

 Nanomaterial toxicity linked to charge, shape, absorption, dissolution (Singh et al., 2019). NPs have good and 

detrimental effects on plants in terms of phytotoxicity. According to (Jha and Pudake, 2016), Plant species and 

NP content affect harm differently. Bacterial toxicity varies with metal type and NP concentration (Hayden et 

al., 2012). Nanomaterials pose challenges to organisms in the environment. Proof of agricultural progress with 

NPs and PGPB needed. In-depth case-by-case examinations necessary for safety. 

 

Conclusion and future perspectives 

 

PGPB offers a viable, environmentally beneficial substitute for pesticides used in agriculture. To succeed, 

studying plant-microbe interactions and novel strategies is essential. Nanotechnology can help overcome 

challenges in biofertilizers, with nanomaterials showing positive effects on PGPB and plant growth. However, 

potential harmful effects on the environment and human health must be explored. Field experiments are crucial 

to validate findings in natural conditions. Careful risk assessment is vital to harness the benefits safely. 
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