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Abstract   
   

In this theoretical study, a mathematical model is developed to carry out 

a systematic analysis of flow behaviour in a two-dimensional vessel 

(modeled as artery) with a locally variable shaped constriction. An 

artificial artery, which containing a viscous incompressible fluid that 

representing the flowing blood can be treated as inflexible vessel. The 

shape of the stenosis in the arterial lumen is chosen to be symmetric as 

well as asymmetric about the middle cross section is perpendicular to 

the axis of the vessel. The constricted vessel is resolved into a straight 

vessel and the entire resulting equations are solved by a numerical 

method with Reynolds number and ‘n’, a number giving the shape of 

the constriction as parameters. The impacts of these parameters on wall 

shear stress, pressure gradient and velocity have been analysed. It is 

found that the flow resistance decreases as the shape of a smooth 

stenosis changes and extreme resistance is attained for the symmetric 

stenosis. But the length of separation increases for the asymmetric 

constrictions and the oscillation in the shear layer appears earlier for 

asymmetric constriction than that in the case of symmetric constriction. 

The extreme resistance is attained for inflexible stenosed vessel rather 

than the flexible one. 

 

Keywords: Two-dimensional vessel, Artificial artery, Incompressible, 

Stenosed artery, Reynolds number, Resistance, asymmetric. 

 

INTRODUCTION: 

 

Blood is a specialized fluid containing a suspension of magnetic particles, specifically red blood cells, within 

non-magnetic plasma due to the presence of haemoglobin (an iron-based compound) in these cells. Stenosis 

refers to the narrowing of the inner surface of arteries or openings and it can lead to various circulatory issues 

by restricting or completely blocking blood flow. When blood flow is compromised in arteries supplying the 

brain, it can result in cerebral strokes while in coronary arteries, it can lead to myocardial infarction and 

subsequently, heart failure. The exact causes of stenosis are not fully understood but it has been suggested 

that cholesterol buildup in arterial walls and the proliferation of connective tissues may contribute to this 
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condition. Vascular fluid dynamics are reported to play a crucial role in the development and progression of 

these pathological conditions. 

 

Atherosclerosis is made by cholesterol, fats and other elements in and on the artery walls. It is also called 

plaque. The plaque can be causes by narrow arteries and blocking of blood flow. The plaque can explode, 

leading to a blood clot. Although atherosclerosis is mostly considered as serious problem in the heart, but it 

can also affect arteries in the whole body. Atherosclerosis can be treated. The prevention of atherosclerosis is 

possible by the habits of healthy lifestyle. Atherosclerosis is a disease which severely influences human 

health. It is characterized by the hardening and thickening of the arterial walls due to the formation of plaque. 

The formation of plaque minimises the arterial passage area creating uncharacteristic blood flow patterns 

with the advance level of disease. As a result, it can cause individuals to suffer cardiac arrest or stroke. 

Stenoses have a complex influence on haemodynamics through and beyond the narrowed arterial segment. 

Atherosclerotic disease tends to be localized in the regions of geometrical obliquity such as branch of vessel, 

curved and stenotic sites and tapered arteries. Coronary artery disease which is the largest single cause of 

mortality in developed nations occurs when the coronary arteries narrow to such an extent that they are 

unable to carry out sufficient blood to the heart muscle for it to function efficiently. There are two important 

causes of death from disease of coronary artery are rupture of the plaque to make sudden occlusion of the 

artery and the slow increase of a stenosis in the artery due to atherosclerosis. The increase of stenosis can 

reduce blood flow and also causes debilitation. 

 

Atherosclerosis is the result of the accumulation of cholesterol, fats and other substances within the walls of 

arteries, forming what is commonly referred to as plaque. This plaque can lead to the narrowing of arteries 

and blockages, potentially causing them to rupture and form blood clots. While atherosclerosis is often 

associated with heart-related issues, it can impact arteries throughout the body. Fortunately, atherosclerosis is 

a treatable condition and its prevention is achievable through adopting a healthy lifestyle. 

Atherosclerosis is a severe ailment that significantly impacts human health. It is characterized by the 

hardening and thickening of arterial walls due to plaque formation. This narrowing of the arterial passage 

leads to abnormal blood flow patterns as the disease progresses. Consequently, it can result in heart attacks or 

strokes for affected individuals. Stenosis, a narrowing of arteries, has a complex impact on blood flow both 

within and beyond the constricted segment of the artery. 

 

Atherosclerotic disease tends to develop in regions where arteries have unusual shapes, such as branching 

points, curved sections, and narrowed areas. Coronary artery disease, the leading cause of mortality in 

developed countries, occurs when the coronary arteries narrow to the point where they cannot supply 

sufficient blood to the heart muscle for it to function effectively. Two key factors contributing to fatal 

coronary artery disease are the sudden blockage of an artery due to plaque rupture and the gradual increase in 

arterial narrowing as a result of atherosclerosis. This increasing stenosis not only reduces blood flow but also 

results in debilitation. 

 

To gain a comprehensive understanding of stenosis development from a physiological perspective, one must 

possess a deep knowledge of how blood flows within the body and be well-versed in the mechanical 

properties of the vascular wall under normal physiological conditions. Having the ability to describe how 

blood flows through a stenosed artery offers the potential for early disease diagnosis, sometimes even before 

the stenosis becomes clinically significant, and forms the foundation for surgical interventions. Timely 

interventions by cardiologists significantly reduce the risk of fatal outcomes. Mathematical modeling plays a 

crucial role in predicting blood flow patterns in arteries affected by atherosclerosis. It enhances the 

understanding and expertise of cardiologists and contributes to insights into the origin and progression of 

stenosis development. This technique enables the prediction of hemodynamic characteristics, including 

pressure, shear stress, velocity and reductions in blood flow. 

 

In recent years, there has been a significant increase in both experimental and theoretical research efforts, 

exploring different aspects of arterial biomechanics concerning blood flow in arteries with varying shapes 

that have developed stenosis. Following Young's pioneering numerical investigation into the hemodynamic 

features of a stenosed artery in 1970, several researchers (including Forrester and Young in 1970, Morgan 

and Young in 1974, Lee and Fung in 1970, Johnson and Kilpatrick in 1990) have delved into the 

hemodynamics of stenosed arteries. They did so by modeling the geometric shape of the stenotic lumen with 

a smooth curve like a cosine. However, it's crucial to emphasize that the interior of a stenosed artery isn't 
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characterized by smoothness; rather, it features an intricate landscape of numerous small valleys and ridges. 

Young (1968) conducted research to explore the blood flow through an arterial stenosis and to observe the 

flow patterns within stenosed arteries. Additionally, Lee and Fung (1970) delved into numerical results 

concerning the distribution and flow patterns of parameters such as velocity, pressure and shear stress at 

various Reynolds numbers in the context of blood flow through locally constricted arteries. These blood flow 

models typically involve a single-layered approach. Kumar et.al. (2014) have analytically studied on blood 

flow through various stenosis shapes and the slip velocity at the arterial wall in the context of mild stenosis. 

Within this analytical investigation, they briefly addressed the geometry of the interface between the 

peripheral layer and the core region, offering numerical insights. In a separate study by Kankane and Bodke 

(2017), the focus was on the radial velocity of blood in stenosed arteries and the associated shape function. 

Their findings indicated that the radial velocity profile exhibited negative values as time increased from 

0.3s to 0.5 s , leading to the occurrence of backflow. 

 

A mathematical model and numerical simulation of blood flow through tapered artery was introduced by 

Shah et. al. (2016). Their findings indicated that as the extremity is approached, wall shear stress increases 

but it decreases for varying tapering angles. Sahu et.al (2010) conducted a study for examining the arterial 

blood flow in stenosed vessel using non-Newtonian couple stress fluid model. Basu et.al (2012) investigated 

a mathematical model based on a non-Newtonian two-phase fluid for blood flow through stenosed arteries. 

But again Basu et.al (2013) proposed a non-Newtonian fluid model for blood flow using the power law 

model through an arterial segment affected by atherosclerosis, considering velocity at the wall. In all of these 

models, the thickness of the peripheral layer is assumed in advance. It would be of significant interest to 

derive an analytical expression for the peripheral layer depth in terms of measurable flow variables such as 

flow rates, pressure gradients and more. Kumar et.al (2020) gave an idea on comparative study of non- 

Newtonian physiological blood flow through elastic stenotic artery with rigid body stenotic artery. Again 

Kumar et.al (2022) worked on a two- layered model of blood flow for stenosed artery along with the 

peripheral layer. Rakshit et.al (2023) worked on a mathematical model of flow of blood in a segment of an 

artery by a non-homogeneous approach. 

 

While considerable research has been conducted in recent decades to explore blood flow in stenosed arteries, 

there has been a limited focus on understanding blood flow across arteries with varying shapes and sizes of 

stenosis. Thus the present work was motivated to investigate the blood flow of a stenosed artery in variable 

shape in the various percentage of area of stenosis. 

 

Equations of Motion: Consider an axi-symmetric and laminar separated flow within a constricted tube, the 

constriction occurring at a designated location; it is possible to simulate the blood flow through an axi-

symmetric stenosis using a two-dimensional approach by employing a cylindrical coordinate system. 

Let us consider the cylindrical polar coordinates denoted as  , ,r z , with z΄-axis aligned along the tube's 

axis of symmetry. The region of interest is  00 r r z  ), 0 r L  ,  where L represents the finite length of 

the tube. The in-compressible two-dimensional Navier-Stokes equations can be taken for the modeling of 

Newtonian blood flow past multiple constrictions. Consider u and v  as the components of velocity in the 

axial and radial directions respectively, p represents fluid pressure,  stands for the the constant density and 

 signifies the kinematic viscosity of the fluid. Let U represent the maximum in flow velocity specified in 

the inlet section or test section of the tube. Introducing the non-dimensional variables:
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where 0D is the diameter of the tube in the unobstructed segment. 
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The fundamental equations governing the in-compressible fluid flow, which address the conservation of mass 

and momentum fluxes, can be expressed using non-dimensional variables as follows: 0
u r

r
z r

 
 

 
 

       (1) 
2 2 2

2 2

1 1

e
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where 
0

e

u D
R


 is the Reynolds number. 

Boundary Conditions: Along the axis of symmetry, the normal component of velocity and shear stress 

diminishes so that
 , ,

0
u z r t

r





,  , , 0z r t   on 0r 

                 
(4) 

The velocity boundary conditions at the arterial wall, when considered as rigid, adhere to the standard no-slip 

conditions, which are expressed as: 

   , , , , 0u z r t z r t   at  0r r z
        

(5a) 

While those in the case of flexible wall are: 

 , , 0u z r t 
,
 

 0 ,
, ,

r z t
z r t

t






on  0 ,r r z t

      
(5b) 

In the governing equations of the model, it was assumed that the flow regime is laminar. Furthermore, the 

model assumed that the flow is fully developed at the inlet test section of the tube, with the inlet section 

positioned at z = 0. The inlet velocity conditions are considered to have a parabolic profile, which 

corresponds to Hagen-Poiseuille flow through an elongated circular tube as:    2, , 2 1u z r t r 
,

 , , 0z r t   at 0r 
   

(6) 

 
Figure: 1(a) Geometry of the tube with symmetric as well as asymmetric constrictions. 

In Figure. 1(a), the downstream length (60) is long enough to ensure that the reattachment length remains 

unaffected by the size of the calculation domain. The zero velocity gradient boundary conditions are applied 

at the outlet cross-section of the tube.
 , ,

0
u z r t

z





, 

 , ,
0

z r t

z




     
 (7) 

 

Initial Condition: The initial condition stipulates that within the specified tube region, there is no flow 

except for the parabolic velocity profile at the inlet. As time progresses, the flow continuously develops. 

 

Transformation of basic equations: Consider a co-ordinate stretching in the radial direction that converts 

the constricted tube into a straight circular tube, as given by:
 0

r
R

r z
 , 00 r r   

   
(8) 

Where the function  0r z is defined as: 
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(9) 

In this context,  0r z  denotes the radius of the tube in the constricted region. The parameters include , 

which signifies the distance from the beginning of the segment to the start of the stenosis,  , indicating the 

distance from the start of the segment to the end of the stenosis, n ( where n ≥ 2 ) is a parameter influencing 

the shape of the stenosis, l stands for the length of the stenosis, 0L  represents the unconstricted radius of the 

tube. Here the constant 0K  is given by: 

1

0

0 1

n

n

n

h n
K

L l n




 , 

where h is the height of the stenosis. 

 

All the profiles described by equation (9) seem to be static and not time-dependent (rigid) and we can easily 

incorporate their time-dependent behaviour in such a way that: 

     0 0 1, .r z t r z a t , where    1 1 cosa t k t    with the amplitude parameter k , 

the phase angle  and the angular frequency . 

The analysis in this study focuses on a schematic diagram of a constricted tube geometry with various shapes, 

as shown in Figure 1(a). The study considers all relevant parameters. For low Reynolds numbers, a finite 

length of 60 is used to represent the flow. However, for high Reynolds numbers, an appropriate length is 

chosen to ensure that the reattachment length is not influenced by the downstream distance. In this research, 

we consider values of n  equal to 2, 4 and 6, resulting in symmetric (centered), slightly asymmetric, and 

severely asymmetric constrictions, each with a width of 14 units. 

 

Numerical computations: The governing equations for viscous, incompressible fluid flows are converted 

into discrete form using finite-difference approximations. In this study, we employ the widely recognized 

staggered grid approach introduced by Harlow and Welch in 1965. When discretizing the continuity equation 

at the  ,i j cell location, we obtain the following: 
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where utc  andubc  are defined as follows: 
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Taking into account the source, convective and diffusive terms at the
thn time step, the finite difference 

representation of the momentum equation in the z  direction can be formulated as follows: 
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where the terms pt , pb and 
,

n

i jUcd are defined as follows: 
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The finite difference equation that provides an approximation for the momentum equation in the R-direction 

is: 
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Here 
,

n

i jVcd represents the discretization of the convective and diffusive terms in the  momentum 

equation at time step n for the cell  ,i j . The treatment of the diffusive and convective terms in the  

momentum equations is analogous to the approach used for the u  momentum equations, particularly with 

regard to the convective flux. The Poisson equation governing pressure is derived by combining the 

discretized versions of both the momentum and continuity equations. The resulting expression for the final 

form of the Poisson equation for pressure is: 
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(13) 

The values 1 2, , , , ,A B C D A A are provided in the work by Layek et al. (2005). Here 
,

n

i i jD  represents the 

finite difference representation of the velocity field's divergence at the cell  ,i j . Subsequently, the ultimate 

version of the Poisson equation is solved iteratively while considering suitable boundary conditions. The 

pressure-velocity correction formulas are applied repeatedly until a desirable level of divergence is attained. 

 

Stability criteria of the scheme: The time step  t is determined based on two criteria as outlined below. 

The first criterion ensures that the fluid does not traverse more than a single cell within one time step, 

adhering to the Courant, Friedrichs and Lewy condition. Hence, the time step must meet the following 

conditions: 
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where minimum is taken in the global sense. Secondly, momentum must not diffuse more than one cell in 

one time step. This condition, which is related to the viscous effects, implies 
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(15) 

By representing the right-hand side of equations (14) and (15) as  1t and  2t respectively, we can 

observe that both of these inequalities are met when the time step  t adheres to the following condition: 

 

 1 2,t Min t t  

          

(16) 
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Hence, in our computations we take: 

 

 1 2,t c Min t t  

          

(17) 

 

Where, c  is a constant lying between 0.2 0.4to . A typical value of  t is 0.005 for a 0.005z  and 

0.05R  . 

 

Results and Discussions: 

 

In this theoretical investigation, we varied the numerical values associated with the specific stenosed artery 

geometry used for simulations and the parameters required for numerical computations of important 

physiological quantities. This was done to explore a range of values around typical values, aiming to obtain 

results that hold physiological significance: 
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The computed results are obtained by the above mentioned numerical scheme (taking) for various physical 

quantities of major physiological significance. In order to have their quantitative measures they are all 

exhibited through the figures 3-11 and discussed at length. 

The computed results were generated using the previously described numerical method, with specific 

parameters (suchas 0.005t  for 0.05z  and 0.005R  ), for a range of crucial physiological 

variables. To provide quantitative insights, these results are visually presented in figures 3 to 11 and are 

extensively discussed in detail. 

Although the arterial constriction typically follows a smooth curve, it also exhibits numerous smaller 

variations akin to ridges and valleys, reminiscent of a mountain range. To thoroughly investigate this issue, 

published data from Back et al. (1984) were utilized to define the shape of the stenosis, as depicted in Figure 

1(b). In comparing our findings with those of Back et al. (1984), Johnston and Kilpatrick (1991) and 

Andersson et al. (2000), we occasionally ignored the arterial wall's dispensability. However, we also paid 

close attention to cases involving a compliant wall model. 

We compared the wall shear stress, as shown in Figure 2(a), with the results obtained in the present 

investigation using a two-stage numerical approach for the scenario of an asymmetric single constriction with 

irregular surface geometry (refer to Figure 1(b)). This comparison was carried out for Reynolds numbers

20eR  and 1000eR  . Notably, our findings closely match those of Johnston and Kilpatrick (1991). 

 

 
Figure: 1(b) Profile of irregular stenosis (Back et.al. 1984) 
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Figure: 2(a) Comparision of wall shear stresses for irregular model at Reynolds numbers 20eR  and 

1000eR  . 

 

The present study includes an examination of pressure drop in the case of asymmetrical stenosis over a range 

of Reynolds numbers from 10 to 1000. We compared these results with the numerical findings of Andersson 

et al. (2000) and the experimental data from Back et al. (1984), as depicted in Figure 2(b). The comparison in 

Figure 2(b) reveals a substantial agreement between our results and the experimental data from Back et al. 

(1984). However, there is a slight discrepancy with the numerical results of Andersson et al. (2000). This 

variation may be attributed to the unsteady flow mechanism employed in the present investigation. 

 
Figure: 2(b) Comparison of non-dimensional pressure drop. 

 

When arteries narrow, such as in the case of a constriction, it results in increased resistance within the flow. 

Consequently, both shear stress (wall vorticity) and pressure drop also rise, and these parameters are of 

significant physiological importance. 

The distribution of pressure on the arterial wall holds great significance because it plays a key role in the 

development of post-stenotic dilatation resulting from arterial damage, which is linked to the intricate flow 

patterns. The variations in pressure on the arterial wall also give rise to fluctuations that generate acoustic 

signals, which can be detected externally, as discussed by Mittal et al. (2001). 

 

A notable drop in pressure is evident in Fig. 3 as we approach the occlusion, reaching a local minimum that 

corresponds to the separation point in both symmetric and asymmetric constrictions (n = 2 and 4). The two 

pressure curves exhibit a similar pattern, and when comparing pressure distribution between the two types of 

stenoses, symmetric and asymmetric, it becomes evident that asymmetric stenosis results in higher pressure 
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values, as shown in Fig. 3. Additionally, as the degree of stenosis increases, the reduction in pressure at the 

constriction's narrowest point decreases significantly, whether it's a symmetric or an asymmetric constriction. 

 

 
Figure: 3 Pressure distribution along the wall in a tube with symmetric constriction and same in case of 

asymmetric constriction of same height 0.3h  and 600eR  . 

 

Fig. 4 displays the changes in centre line velocity in the axial direction at Re = 600 for stenoses of different 

shapes, with n values of 2, 4 and 6. The figure makes it quite evident that the maximum centre line velocity 

occurs just slightly downstream of the constriction. This is a result of the recirculation zone formation near 

the wall due to flow separation. In the case of symmetric constriction (n = 2), which is centred, the narrowing 

in the converging part of the stenosis leads to a more pronounced flow acceleration compared to the 

asymmetric stenosis (n = 4). As the Reynolds number increases, it is observed that the centre line velocity 

takes a longer distance to return to its initial value. 

 

 
Figure: 4 Centreline u  velocity in a tude with symmetric constriction and same in case of asymmetric 

constriction of same height 0.3h  and 600eR  . 

 

Wall shear stress holds physiological significance, and there are two opposing hypotheses regarding its role 

in the onset of atherosclerosis. Calculating wall shear stress accurately is a challenging task. In this context, 

numerical simulations offer valuable insights into the magnitude of wall shear stress. Fig. 5 illustrates the 

wall shear stress for symmetric ( 2n  ), slightly asymmetric (n = 4) and severely asymmetric (n = 6) 

stenoses at a Reynolds number 220eR   with a 51%area reduction ( 0.3h  ). It is evident that in the case 

of a severely asymmetric constriction ( 6n  ), flow separation occurs, while in the slightly asymmetric 

constriction ( 4n  ), flow separation initiates. In contrast, there is no flow separation in the case of 

symmetric constriction ( 2n  ). 
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Figure: 5 Wall shear stress distribution in a tude with symmetric constriction and same in case of asymmetric 

constriction of same height 0.3h  and 220eR  . 

 

In Figure 6, we observe the variation of wall shear stress along both solid and flexible surfaces for differently 

shaped constrictions at 600eR  with 0.5h  . Notably, the peak vorticity location is right before the plane 

of minimum constriction for both rigid and flexible wall models. As the flow approaches the constriction, the 

magnitude of wall shear stress values increases rapidly, reaching a peak value near the point of minimum 

constriction in all cases. Downstream from this location, the wall shear stress decreases rapidly and turns to 

negative values when flow separation initiates along the tube wall. 

 

 
Figure: 6 Wall shear stress distribution in a rigid as well as flexible tube with symmetric constriction and 

same in case of asymmetric constriction of same height 0.5h  and 600eR  . 

 

The points where vorticity equals zero correspond to stagnation points, as well as the locations where 

attached vortices separate and reattach. It's also noticeable that the maximum wall shear stress value 

decreases as the shape of a smooth stenosis becomes more pronounced, with the highest wall shear stress 

achieved in the case of a symmetric stenosis  2n  . This observation aligns perfectly with the analytical 

study conducted by Haldar (1985). For both rigid and flexible arteries, a similar trend is observed in the 

respective wall shear stress distributions, with variations primarily in magnitudes. The highest wall shear 

stress value is greater in the case of a rigid tube compared to a flexible one. Moreover, in the case of a rigid 

tube, the point of separation shifts further downstream compared to a flexible tube.In Figure 7, we can 

observe the influence of stenosis severity on both symmetric and asymmetric cases. In both situations, as the 

height of the constriction increases, both the peak wall shear stress and the length of the separation zone also 

increase. 
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Figure: 7 Comparision of wall shear stress distribution in a tube with symmetric constriction and same in 

case of asymmetric constriction at 600eR  . 

 

Fig. 8 illustrates the distributions of wall shear stress (𝜏w) for Reynolds numbers Re = 600 and 1000. At the 

highest Reynolds number considered, we observe a similar situation in the converging part of the stenosis, as 

demonstrated in Fig. 9(a). However, in the downstream diverging part, the deceleration of the fluid is more 

gradual compared to lower Reynolds numbers, and the axial velocity has not yet reached its asymptotic limit 

(2) at the downstream end of the stenosis, for both symmetric and asymmetric cases. In the case of 

asymmetric constrictions, there is an increase in the length of separation, and both the separation point and 

the reattachment point are shifted further downstream in these scenarios. 

 

.  

Figure: 8 Comparision of wall shear stress distribution in a tube with symmetric constriction and same in 

case of asymmetric constriction of same height 0.3h   
 

The level of fluctuation in wall shear stress is of significant interest. It's worth noting that highly variable 

wall shear stress can increase the susceptibility to atherosclerosis. This variability in shear stress can hinder 

the alignment of endothelial cells in the direction of flow, potentially making the intima more permeable to 

the entry of monocytes and lipoproteins. In Fig. 9(a), we observe the oscillatory nature of wall shear stress at 

1000eR   and 0.3h  . 

It's quite evident from this figure that the oscillations in the shear layer manifest earlier in the case of 

asymmetric constriction compared to symmetric constriction. Additionally, in asymmetric constrictions, the 

length of separation increases, and both the separation point and the reattachment point shift further 

downstream. 

 



Journal of Advanced Zoology  

 

Available online at: https://jazindia.com    1204  

 
Figure: 9(a) Wall shear stress distribution in a rigid as well as flexible tube with symmetric constriction and 

same in case of asymmetric constriction of same height 0.3h  and 1000eR   

 

The dynamic behaviour of blood flow through a distensible artery is highly significant when considering 

realistic scenarios with stenotic conditions. With this in mind, we examine the time-dependent response of 

the stream wise velocity component at 600eR  , specifically at 11z  (where z  represents the distance 

from the tube inlet) within the constricted region. This analysis focuses on a 51% area reduction case for 

asymmetric constriction  6n  in both rigid and flexible arteries, as depicted in Fig. 9 (b). In both rigid and 

flexible arteries, we observe substantial distortions in the stream wise velocity component at the initial stage 

of the simulation. This is followed by a consistently undulating stream wise velocity pattern in the case of the 

rigid artery. In contrast, the flexible artery exhibits a uniform stream wise velocity for the remainder of the 

considered time period. 

 

 

Figure: 9(b) Time history of streamwise velocity component 600eR  in a rigid as well as flexible tube with 

asymmetric constriction  6n  of hight 0.3h  at 11z 
 
(in the constricted region) 

 

In Fig. 10(a), we observe oscillations in the stream wise velocity component with a frequency of 0.2 at z = 11 

(representing the distance from the tube inlet) within the constricted region. This phenomenon occurs at a 

Reynolds number of 1000 for a 51% area reduction in the case of asymmetric constriction (n = 6). It's worth 

noting that no oscillations are observed upstream of the constriction. Fig. 10(b) presents the time history of 

the stream wise velocity component at z = 24, which is where the constriction ends, under the same 
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conditions (Re = 1000 and 51% blockage for asymmetric constriction, n = 6). Here, we observe a different 

type of oscillation with the same frequency. 

 

 

Figure: 10(a) Time history of streamwise velocity component 1000eR  in a rigid as well as flexible tube 

with asymmetric constriction  6n  of hight 0.3h  at 11z 
 
(in the constricted region) 

 

Figure: 10(b) Time history of streamwise velocity component 1000eR  in a rigid as well as flexible tube 

with asymmetric constriction  6n  of hight 0.3h   at 24z 
  

(in the constricted region) 

 

Figures 11(a), (b), and (c) display the streamline patterns for symmetric  2n  , slightly asymmetric ( 4n  ), 

and significantly asymmetric ( 6n  ) constrictions, respectively. These figures unmistakably reveal the 

development of separated regions resembling bubbles downstream of the constriction in each scenario. It's 

noteworthy that the extent of these circulatory bubble formations increases as the asymmetry of the 

constriction becomes more pronounced. The degree of constriction asymmetry significantly influences the 

occurrence of flow separation. 
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Figure: 11(a) Streamline in a rigid as well as flexible tube with symmetric constriction of  75% area 

reduction at 600eR   

 

 
Figure: 11(b) Streamline in a rigid as well as flexible tube with asymmetric constriction  4n  of  75%

area reduction at 600eR   

 

 

Figure: 11(c) Streamline in a rigid as well as flexible tube with asymmetric constriction  6n  of  75%

area reduction at 600eR 
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Conclusion: 
 

This mathematical model addresses blood flow through stenosed arteries of various shapes. A comparison of 

the results from this current theoretical study with previous ones, which were based on the assumption of 

Newtonian blood behaviour, rigid arteries and steady-state conditions, demonstrates a notable level of 

agreement. Consequently, the present model offers a more insightful perspective on the intricate flow 

phenomena in stenotic situations. This model makes significant progress over previous ones by accounting 

for unsteadiness and incorporating vessel wall distensibility. It is suggested that the development of a 

separation region toward the diverging area of the constriction is a key area for the further deposition of 

atherosclerotic plaques. The presence of an asymmetric constriction in the context of arterial plaque may be 

beneficial for the early detection of cardiovascular diseases. 
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