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Abstract 
 
Monoclinic structured MoO3 thin films were prepared on a glass substrate. The Ni doped 

materials to add the MoO3 in different concentrations (1%, 3%, 5%) at Wt% with MoO3 

precursor and synthesis was done using the spray pyrolysis method. X-ray diffraction 

revealed the incorporation of Ni in the MoO3 Monoclinic structure. FE-SEM images 

showed more dispersive and rod shapes than Ni-doped MoO3 and pure MoO3 respectively. 

The ideality factor, barrier height, and saturation current were measured for two samples 

pure MoO3 and Ni-doped MoO3 at 5% doping level. The ideality factor was calculated 

using electrical measurements, while the barrier height and saturation current were 

determined through analysis of the current-voltage (I-V) characteristics. 
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1. INTRODUCTION 

Transition metal oxide, remarkably MoO3 due to its physical and chemical properties had a wide attention in 

research. Since last few years MoO3 possess good structural, electronic and optical characteristics that finds its 

application in gas sensors, catalysts and opto electronic field [1-5]. The n-type MoO3 films shows good results 

in photovoltaic applications. Among the various preparation methods available spray pyrolysis techniques is 

found to be the simplest and low cost method [6-8]. Which has economically attractive setups. The MoO3 has a 

wide ban gap n-type material which possess good structural and electronic characteristic that can be used in 

many industrial applications [9-10]. The fabrication of p-Si junction diode using spray pyrolysis technique is a 

simple, low cost and low temperature process which has a remarkable opening for the making of photonic and 

nano electronic devices [11, 12]. This report presents an analysis of the ideality factor (n), barrier height (ФB), 

and saturation current (Io) for two different samples: pure MoO3 and Ni-doped MoO3 at a 5% doping level. 

These parameters play a crucial role in understanding the electrical behavior of semiconductor materials. The 

ideality factor reflects the degree of deviation from the ideal diode behavior, the barrier height represents the 

energy barrier that charge carriers must overcome, and the saturation current provides insights into the leakage 

current across the material. 

 

2. RESULTS AND DISCUSSION 

 

XRD Analysis: 

Figure 1 shows the XRD pattern of prepared samples of pure and Ni doped MoO3 thin films using the jet 

nebulizer spray pyrolysis technique at 450˚C. Figure 1 shows XRD all detectable peaks (0 0 1, 1 0 0, 0 0 2, 0 1 

1, 1 1 0, 0 1 2, 1 0 2, 2 0 1, 0 2 0, 1 2 0, 2 1 1) can be indexed to Pure MoO3 monoclinic structure with JCPDS 

card no. 85-2405. The monoclinic lattice parameter, the values of d, the distance between the crystal planes, 

were calculated from Bragg Law, λ=2d sinθ. Table 1 shows the Structural parameter of MoO3 and Ni doped 

MoO3 (1%, 3% and 5%). The (2 2 1) (h k l) plane was selected to calculated the structural parameters of the 

prepared the samples [13-17]. 
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Figure 1. XRD pattern of MoO3 and Ni doped MoO3 (1%, 3% and 5%) 

 

Table 1. Structural parameter of MoO3 and Ni doped MoO3 (1%, 3% and 5%) 

Material 
Diffraction 

Angle 2θ 

(221) Inter 

planar 

distance Å 

FWHM 

(Radians) 

Crystallite 

size (D) 

nm 

Micro 

strain (ε) 

( × 

10 −3 lines− 

2 m−4) 

Dislocation 

density 

( × 1014 

lines/m2) 

Stacking 

fault × 10– 

2 

Pure 

MoO3 
27.4330 3.24859 0.27250 52.41 3.639 0.0661 0.14915 

1% Ni 

doped 

MoO3 

27.4848 3.24259 0.28080 50.87 3.863 0.0681 0.15386 

3% Ni 

doped 

MoO3 

27.5702 3.23274 0.28820 49.57 4.068 0.0699 0.15820 

5% Ni 

doped 

MoO3 

27.6417 3.22454 0.29520 48.40 4.267 0.07166 0.16229 
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FE-SEM Analysis: 

Figure 2 displays the analyzed MoO3 films as well as the thin film samples of Ni-doped MoO3 at concentrations 

of 1%, 3%, and 5%. These samples underwent examination using low magnification (2μm) via FE-SEM 

analysis. In Figure 2a, visuals of multidispersive and unevenly sized rods are apparent. Upon introducing 1%, 

3%, and 5% Ni doping into the MoO3 samples, the images reveal a higher degree of dispersion and rod-like 

formations compared to pure MoO3. The imagery illustrates a notable alteration in the shapes of the prepared 

samples, coinciding with an increase in doping concentration, which in turn contributes to a more loosely 

defined surface tension. 

 

 
Figure 2. FE-SEM images of MoO3 and Ni doped MoO3 (1%, 3% and 5%) 

 

Elemental Analysis 

Figure 3 shows the EDAX spectrum of MoO3 and Ni doped MoO3 (1%, 3% and 5%). According to the data 

presented in Table 2 (a), the elemental analysis spectrum for pure MoO3 unequivocally demonstrates the 

presence of Mo and O elements in the prepared samples, with no detectable indication of other elements [18, 

19]. In Table 2 (b-d), the elemental analysis spectrum for Ni-doped MoO3 illustrates the existence of Ni, Mo, 

and O elements within the samples that were prepared. 
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Figure 3. EDAX of MoO3 and Ni doped MoO3 (1%, 3% and 5%) 

 

Table 2. Elemental analysis of MoO3 and Ni doped MoO3 (1%, 3% and 5%) 

 
 

UV-Vis Analysis 

 
Figure 4. UV-Vis analysis of MoO3 and Ni doped MoO3 (1%, 3% and 5%) 

 

Figure 4 shows the UV-Vis analysis spectrum of Pure and doped MoO3.  Compared with Pure MoO3, 1%, 3%, 

and 5% Ni doped MoO3 were peak observed 363 nm, 370 nm, 372 nm, 375 nm respectively.  
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I-V characteristics of n-Ni doped MoO3/p-Si diodes 

 
Fig. 5(a) The device structure of back contact 

 

Fig.5 (a) shows represents the schematic of n-MoO3/ p-Si device structure the current voltage characteristics of 

undoped and Ni (wt.5%) doped n-MoO3/p-Si diode. 

 

 

 
Fig. 5. (b - d).  I-V curve of (b) n-MoO3/p-Si, (d) n-Ni MoO3/p-Si diodes, I-V curve of (c, e) current density (J)-

voltage (V) plots of pure MoO3 and n-Ni MoO3/p-Si diodes 

 

Figure 5 depicts the I-V curve of n-MoO3/p-Si, (d) n-Ni MoO3/p-Si diodes and current density (J)-voltage (V) 

plots of pure MoO3 and n-Ni MoO3/p-Si diodes. 

 

For pure MoO3, the ideality factor (n) was measured to be approximately 1.5744. In the case of Ni-doped MoO3 

at 5% doping, the ideality factor increased significantly to around 4.1864. The increase in the ideality factor for 

the doped sample suggests the presence of additional recombination centers or defects in the material. This 

deviation from the ideal value of 1 indicates a less ideal diode behavior, potentially due to the incorporation of 

Ni impurities. The barrier height (ФB) represents the energy difference between the conduction band edge and 
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the Fermi level, indicating the ease with which charge carriers can move across the semiconductor junction [20, 

21]. For pure MoO3, the barrier height was calculated to be approximately 0.41702 eV. With Ni doping at 5%, 

the barrier height increased to around 0.58584 eV. The increase in barrier height with doping could be attributed 

to changes in the electronic structure of the material due to Ni incorporation, affecting charge carrier transport. 

Saturation current (Io) signifies the leakage current when the diode is in the reverse-biased condition and 

provides information about the material's quality and purity. Pure MoO3 exhibited a saturation current of 

5.42×10
-5

 A. Ni-doped MoO3 at 5% doping showed a significantly lower saturation current of 8.96×10
-8

 A. The 

lower saturation current in the doped sample suggests improved material quality, possibly due to the reduction in 

defects or impurities at the semiconductor interface [22]. 

 

3. CONCLUSION 

Pure MoO3 and Ni-doped MoO3 thin films were made coated successfully and characterized using simple and 

rapid synthesized method.  The analysis of ideality factor, barrier height, and saturation current for pure MoO3 

and Ni-doped MoO3 (5% doping) revealed distinct differences in the electrical behavior of the two samples. The 

increased ideality factor, higher barrier height, and lower saturation current observed in the doped sample 

suggest the influence of Ni doping on the electronic properties of MoO3. Further investigations into the role of 

doping and its impact on the semiconductor behavior are warranted to gain a comprehensive understanding of 

the material's electrical characteristics. 
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