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Abstract 

 
Due to their potential to reduce silicon area or boost throughput, low-
precision computations were widely studied to speed up deep learning 

applications on field-programmable gate arrays (FPGAs). However, the 

precision suffers as a result of these advantages. proving the superiority of 
modified reconfigurable constant coefficient multipliers (MRCCMs) over low-

precision math in terms of silicon area savings. MRCCMs can be highly 

optimized for FPGAs because they only use subtractors, adders, multiplexers, 
and bit shifts (MUXs) to multiply input values by a constrained set of 

coefficients. suggested a family of MRCCMs designed specifically for FPGA 
logic components to guarantee their effective use. Create innovative training 

methods that convert potential MRCCM coefficient models to the weight value 

ranges of neural networks to reduce information loss due to quantization. As a 
result, hardware can still use MRCCMs while keeping high accuracy. 

Utilizing the  ResNet-18, ResNet-50, and AlexNet networks, illustrates the 

advantages of these methods. The resulting implementations reduce resource 
consumption by up to 50% compared to conventional 8-bit quantized 

networks, which results in substantial speedups and power savings. All other 
methods with MRCCMs accomplish accuracy that is at least comparable to an 

8-bit uniformly quantized system while significantly reducing resource usage, 

while our MRCCM has the lowest consumption of resources and surpasses 6-
bit fixed point accuracy. Similar to that, this study compared the MRCCM  

approach using Xilinx FPGA on various sizes of MRCCM like ADD-3, ADD-

4, and ADD-2. 
 

Keywords: neural networks, reconfigurable, multiplier, gate arrays, 

training technique. 

 

1. Introduction 

One of the most widely applied methods in digital signal processing is multiplication with constants. 

(DSP). In DSP applications, which were formerly managed by Application Specific Integrated Circuit 

(ASIC) versions, FPGAs are growing in popularity. The rising cost of ASIC manufacturing and the 
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adaptability offered by FPGAs' reprogrammability are the causes of this tendency. FPGA designs are 

generally larger, slower, and more power-hungry than comparable ASIC realisations as a trade-off for 

the reprogrammability of these devices. Therefore, optimised DSP code designs for FPGAs are 

becoming increasingly crucial. One of the reasons embedded multipliers are found in FPGAs is for this 

purpose.  They are undesirable, though, due to their stringent word limits and availability limitations 

for those pre-existing coarse-grained blocks. Limited supply is especially important in industrial 

applications where it is critical to choose affordable FPGAs with few embedded multipliers and other 

design components are vying for DSP resources. Alternative logic-based constant multiplication 

techniques that are not reliant on embedded special purpose hardware are needed to close the 

development gap to the realisation of an ASIC. As a consequence, the shift-add circuit, which employs 

constant multiplication, is the subject of extensive research on how to use it most effectively. 

However, it is equally essential to use smaller, more focused constant factors during run-time as 

opposed to larger, more comprehensive ratios.  Reconfigurable constant multipliers are used to create 

hardware-efficient run-time adaptable filters, such as for adaptive control and video coding apps. It is 

shown how an application with stringent resource and reconfiguration time constraints requires highly 

optimised RCMs on FPGAs. The control system of the particle accelerator uses an FPGA as a co-

processor there.  

Because of their superior prediction abilities, convolution neural networks (CNNs) have been 

extensively used in contemporary computer vision applications. Researchers frequently favour larger 

networks with more complex processing and memory requirements. It has been shown that field-

programmable gate array (FPGA) implementations outperform central processing unit (CPU) and 

graphics processing unit (GPU) implementations in terms of latency and resource efficiency. They 

allow customised data paths that boost parallelism and require less data movement than CPU/GPU 

technologies.  Through the use of custom hardware tailored to specific applications, this design 

flexibility provides the chance to maximise system efficiency.  

According to
1
 the hardware platform uses four Altera Stratix III field-programmable gate arrays and 

considers both the cellular and network layers. This makes it possible to execute a large-scale neural 

network with realistic biophysical dynamics.  

said that a number of uses for picture processing heavily rely on two-dimensional convolution
2
. Using 

different kernel sizes for image convolving improves the total performance of image processing 

applications. As a result, it is imperative to construct a reconfigurable convolver that takes the list of 

recommended kernel sizes into consideration.  The proposed model performs considerably better than 

previous works in terms of resource utilization, accuracy, and maximum clock frequency, according to 

simulations and hardware implementations on FPGA
3
  

In reaction to this discovery, we propose LUTNet, a complete hardware-software framework for the 

design of space-efficient FPGA-based neural network accelerators using native LUTs as inference 

operators
4
. 

In the area of computer vision, convolutional neural networks (CNNs) have recently achieved great 

success. The weights in a CNN layer are represented by a limited number of quantized segments in 

this approach 
5
. Hardware acceleration of CNNs using these devices has become a viable strategy. The 

most effective method for computing convolution for smaller filter sizes is Winograd filtering based 

convolution [6]. 

Computer, biological, and electronic disciplines are all combined in the comparatively new 

interdisciplinary field of neuromorphic research. Neuromorphic systems, made up of software and 

hardware systems, are used to create neural networks that are built on the capabilities of the human 

brain 
7
. 3-D convolutional neural networks are extensively used in computer recognition software. (3-

D CNNs). The bulk of earlier work in this area only concentrated on the design and optimisation of 

accelerators for 2-D CNNs, and there have been few attempts to accelerate 3-D CNNs on FPGA 
8
. 
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Notable features of FPGAs include variant peripheral support and flexibility to partial or major design 

modifications. However, due to their high power consumption, large die area, and poor performance, 

FPGA-based designs are not commonly used in low-power embedded devices with soft-core 

processors 
9
. 

According to 
10

 a modified leaky integrate-and-fire (LIF) model is used to realise the hierarchical 

SNN, which achieves both high efficiency and minimal hardware usage. CNNs result in improved 

results but require more memory and processing power. Therefore, convolutional neural network 

reasoning is frequently carried out in centralised high-performance systems
11

. 

Convolutional neural networks (CNNs) have lately been accelerated using a variety of accelerators on 

FPGAs in many domain-specific application areas. Additionally, the theoretical computational burden 

of CNN inference has been considerably reduced by some optimisation methods, such as network 

sparsity and quick algorithms
12

. Multipliers are crucial circuit elements for increasing the energy 

economy of CNN and image processing hardware solutions
13

. Quantization is a crucial form of 

optimisation for floating-point deep neural network (DNN) accelerators. Digital signal processing 

(DSP) blocks on field-programmable gate arrays are ineffectively used when the accelerator precision 

is considerably lower than the DSP precision 
14

. 

To enable a range of DNN models, efficient DNN inference implementations on edge-computing 

platforms, such as ASICs, FPGAs, and embedded systems, are carefully investigated. Because DNN 

models are so large and demand so much computation, model compression is an essential step in the 

deployment of DNN models on edge devices 
15

. 

 

2. Methodology 

Proposed system 

In a field programmable gate array, a deep learning app will involve very low-accuracy arithmetic 

operations, which will require more silicon area. To improve performance in the silicon area and use 

little accuracy in arithmetic applications, an MRCCM was introduced in the suggested work. With 

only subtractors, adders, multipliers, and bit shifts as their only coefficients, MRCCMs multiply the 

incoming value by a small number of coefficients. Utilizing a low power and space-efficient carry 

select adder, this way to lower the logic area in MRCCM-based computations will result in a greater 

reduction in silicon area for deep learning apps. (figure 1) In a similar vein, this study compared the 

currently used ripple carry adder-oriented MRCCM approach via Xilinx FPGA, on various sizes of 

MRCCM including ADD-3, ADD-4, and ADD-2. 

 

 

Figure 1 Architecture of VLSI  
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Reconfigurable Multipliers 

 

A device known as a constant coefficient multiplier calculates y = cx using only additions, bit shifts, 

and subtractions, where c is a fixed value. To calculate y = 6x, for instance, using adds and shifts. A 

circuit known as an MRCCM computes y = cs xs, where cs is a discontinuous coefficient set C = c0, 

c1,..., cN1 selected from a [log2(N)] bit choose signal. The most common methods for realizing 

MRCCMs include subtractions, additions, MUXes, and bit shifts. A sample of an MRCCM with the 

coefficient set C = 12305, 20746 is shown in Fig. 2.  

 

 
Figure 2 Programmable multiplier with coefficients fixed to 12305 and 20746 

 

 

FPGA Multipliers Mapping 

 

It looked for building elements that effectively map to an FPGA's logic fabric. Although comparable 

circuits can be obtained for other FPGAs, our concepts are optimized for the most recent Xilinx 

UltraScale/UltraScale+ FPGAs). As a result, we made sure the MUXes fell into the same LUTs that 

were necessary for the adders when designing our base structures. The two base configurations used to 

construct the MRCCM units in this paper are depicted in Fig. 3. 

 

Figure 3 Reconfigurable multiplier base configurations (a) Topology A and (b) Topology B. 

Experimental Design 
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XILINX 

A provider of customizable logic devices was Xilinx. It was the first semiconductor firm with 

a flexible manufacturing approach, and it is credited with creating the FPGA. The business was 

established in Silicon Valley in 1984 and has offices in California, San Jose, Dublin, Tokyo, the 

United States, Ireland, and Singapore. Corporate headquarters for the business are located in North 

America, Asia, and Europe. For the generation and evaluation of HDL designs, Xilinx ISE is a 

discontinued piece of software from the company. It was mainly used to create embedded code for the 

FPGA and CPLD IC (integrated circuit) product families from Xilinx. Xilinx Vivado replaced it in the 

market. 

 

ISE DESIGN SUITE: SYSTEM EDITION 

 

The top high-level tool for constructing high-performance digital signal processing (DSP) systems 

using Xilinx programmable devices is called System Generator for DSP. It offers system modeling and 

automatic generation of code from MATLAB and Simulink. 

VERILOG 

 

One of the two primary Hardware Description Languages (HDL) utilized by academic and industrial 

hardware programmers is Verilog. Since most computer and electrical engineers study C in college, 

Verilog is very similar to C and is well-liked by them. Cadence had its private language called Verilog 

HDL. With the hope that the language would gain more acceptance, the market for software products 

linked to Verilog HDL would expand more quickly, Cadence was driven to make the language 

available to the public domain. Cadence acknowledged the demand from Verilog HDL customers for 

other service and software providers to adopt the language and create Verilog-compatible design tools. 

Register-Transfer Level 

 

Designs that use the Register-transmission Level define the properties of a circuit using processes and 

data transmission between the registers. Any code that can be synthesized is considered an RTL code, 

according to modern meaning. 

 

Behavioral level 

An algorithmic system is described at this level. (Behavioural). Each algorithm is sequential, 

which implies that each of its commands is carried out one at a time. The primary components are 

blocks, functions, and tasks. The design's structural implementation is not taken into consideration. 

 

Multiple Library Flow 

ModelSim makes two applications of libraries: two ways: 1) as a resource library; 2) as a local 

working library containing the compiled form of your design. As you alter your design and recompile, 

the items in your working collection will also change. A resource library usually contains static 

components that are used in your design. It can build its resource libraries or use ones that are already 

available from other design teams or outside sources. When the design is built, it defines which data 

libraries are to be employed, and there are guidelines to determine the order in which they are 

examined.  When your gate-level development and testing bench is built into the working repository 

and the design refers to gate-level models in a different resource library, you are using both a resource 

library and a  working library. (figure 4) The fundamental stages for modeling with numerous libraries 

are depicted in the diagram below. 
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Figure. 4 Flow chart of Multiple Library 

Gate Level 

Logical links and their timing features inside the logical level define the features of a system. 

Every signal is distinct. They can have the discrete logical numbers "0," "1," "X," and "Z." The 

predefined logic primitives are the usable actions. (basic gates). His netlist is utilized for gate-level 

backend and modeling, and tools like synthesis tools are used to create gate-level code. 

 

Tools of Debugging 

Numerous tools are available in Model Sim to analyze and fix your design. The following lessons will 

address several of these instruments, including: 

1. Using tasks 

2. utilizing several frameworks 

3. placing breakpoints and navigating the source code 

4. Observing patterns and timing 

5. Examining and starting recollections 

6. Using the Waveform Editor, make stimuli 

7. Simulator automation 

3. Results and Discussion 

XILINX Simulation of Reconfigurable Multipliers  

When the I/Q block was built on a XILINX VirtexE2000-6 FPGA for the 16-bit computation, the 

implementation expenses of the alternatives were 33% and 50%, respectively, of the device utilization. 

Power usage data is comparable. Power usage drops by 33% when switching from 28-bandwidth to 

19-bit-width. A study against a specialized hardware multiplier was made using a configuration on a 

XILINX XC4000XV FPGA.(figure 6) Researcher observed the maximum bandwidth for a typical 
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1616 multiplier of 51 MHz for a single 32-bit product in a single clock cycle and a maximum 

bandwidth for the proposed multiplier of 42.8 MHz for 16 32-bit products in three pipeline cycles. 

 

Figure 5 The output of the suggested 16-bit reconfigurable multiplier's test with the coefficients set to 

12305 and 20746 

 

Modeling Base Topology A Used To Construct Variable Multipliers 

The reduction in silicon area might be utilized as well to increase parallelism, which would increase 

throughput, decrease latency, or allow the design to work on a smaller FPGA. For instance, although 

the Conv Layer and AlexNet methods already calculate one PE for each output feature map, the 

researcher can raise pl and calculate more output map feature pixels concurrently to cut down on the 

quantity of PE iterations needed to compute a layer. Most big neural networks might be accelerated 

using this simple optimization. Such networks typically have a lot of inherent redundancy and high 

processing demands, and because of resource limitations, FPGA accelerators employ some kind of 

layer folding. This is particularly true for implementations with higher accuracy when precision 

maintenance is crucial.  As a result, the AddNet multiplier was a tool that can be used very broadly to 

increase the parallelism of FPGA NN designs that are already in use. 

 

Figure 6 Base Topology Output from Simulation used to create a variable factor 
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Base Topology B Simulation Used To Create Reconfigurable Multiplier 

Figure  7 shows the maximum multiplier units versus frequency values for various parameter 

configurations.  The only additional processing time is needed to reconfigure the LUTs when the 

constant needs to be changed. The setup time is displayed for two programming schemes, of various 

constant sizes, and the setup time. About 20% more effort is needed to reconfigure the direct scheme 

than the reverse one. The restructuring procedure moves very quickly—on the order of 100 ns.  The 

initial 2 units also contain two logic modules that control both the output stream, or the outcome, and 

the inbound data stream, which includes the multiplicand and multiplier operands. (figure 7) The IU 

specifically handles the data transmission from and to the bus. Typically, the output and input bus 

bandwidth and data word length are distinct, so an internal control logic circuit is created to address 

this problem. 

 

Figure 7 Base topology B simulation data for the reconfigurable multiplier 

 

A plan for a reconfigurable grid of multipliers was offered. The processor may be changed or at 

runtime modified to exchange matrix size for bandwidth. For example, it takes a total of (s/m)2 =4k 

mm multipliers to build an array of multipliers with the size s=maximum input unit bitwidth=2k+2 

(k=0,1,2,...), and each pipeline phase can handle an input array combined with the size h=(s/b)2 b-bit 

components in parallel. (table 1) By reusing components, the design achieves superiority. This fact 

makes it possible to use a portion of the structure, for instance, when electricity reduction is required. 

 

Table 1 Number of cases where the proposed optimal shift reassignment allows for the preservation of a  

certain number of 2:1 multiplexers compared to the original DAG fusion solution. 
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4. Conclusion 

Reconfiguration techniques used in RCM creation are LUT-based and multiplexer-based. However, 

because Reconfigurable Constant coefficient multipliers are limited to a specific number of target 

values, their use is currently only possible in certain DSP application areas, such as linear changes and 

digital filtering. Reconfigurable Constant coefficient multipliers with coefficient sets that closely 

resemble the desired range of neural network weights are designed using the suggested technique, Add 

Net. Additionally, we create a technique for preparing neural networks to utilize RCCMs. According 

to this research, Add Net exceeds low accuracy computation in terms of precision for a particular 

silicon area budget when optimizing neural networks. 
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