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Abstract 

 

This paper presents the design and simulation of a ring oscillator using 

nanotechnology and the Cadence Virtuoso platform. As feature sizes continue to 

shrink, new design methodologies are required to account for quantum effects that 

become prominent at the nanoscale. This paper utilizes predictive technology 

models for a 45nm process to design a three-stage ring oscillator with minimum 

channel lengths. The ring oscillator design is optimized through careful selection of 

transistor characteristics and layout considerations. Post-layout simulations 

demonstrate functionality with oscillation frequency and phase noise matching 

expected theoretical values. The completed design provides a demonstration of a 

basic analog circuit block implemented with nanoscale technology. 

 

Keywords: Ring oscillator, nanotechnology, Cadence Virtuoso, analog design, 

predictive technology models 

Introduction 

With the aggressive scaling of CMOS technology into the deep submicron regime, designers must account for 

quantum mechanical effects that were previously negligible at larger feature sizes. Tunneling through thin gate 

oxides, increased subthreshold conduction, and discrete dopant fluctuations all contribute to make device 

behavior less deterministic at the nanoscale [1]. While digital designers can rely on statistical simulations to 

capture the impacts of intrinsic parameter variations, analog and RF designers face the additional burdens of 

meeting stringent noise and matching requirements. As a result, new design methodologies and tools are 

needed to enable robust circuit operation at dimensions below 45nm [2]. 

This paper presents the design and simulation of a three-stage ring oscillator implemented in a 45nm predictive 

technology model (PTM) [3]. The ring oscillator represents a basic analog building block, providing a time-

varying signal with frequency determined by propagation delays through the inverter stages. Ring oscillators 

have a variety of applications in clock generation, frequency synthesis, and on-chip testing. Designing the ring 

oscillator in a nanoscale process enables an evaluation of the impacts of process variations and layout 

considerations when working at minimal channel lengths. 

The design is implemented through the Cadence Virtuoso platform, allowing for schematic capture and layout. 

The use of Cadence's analog design environment facilitates optimization of transistor sizing and layout for 

analog performance metrics such as phase noise. Post-layout simulation results demonstrate design 

functionality and match expected output frequency and phase noise performance based on theoretical 

calculations. This project provides hands-on experience with the opportunities and challenges associated with 

implementing analog integrated circuits at the nanoscale. 
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Graphical representation of the area and power ratio 

Review Of Literature 

Nanoscale CMOS Design Challenges 

Pushing CMOS technology to gate lengths below 25 nm introduces significant variability and reliability 

challenges that require innovations in device design and manufacturing [4]. Lithography limitations lead 

toCLK = 1.Sr=becomatic line edge roughness, causing threshold voltage fluctuations along the channel. 

Discrete dopants in the depletion region led to random threshold voltage mismatch between devices. Increased 

gate tunneling current degrades device reliability. Managing increased parametric variability requires 

statistical compact models and design methodologies that depart from deterministic circuit simulations [5]. 

Ring Oscillator Fundamentals 

A ring oscillator consists of an odd number of inverting stages connected in a circular loop, such that the output 

from the last stage is fed back to the input of the first [6]. With inversion around the loop, oscillations are 

sustained at a frequency determined by twice the propagation delay per stage. Standard assumptions for ideal 

inverter switching yield the following expression for oscillation frequency [7]: 

fOSC = 1/(2N(RLOADCL + ?INV)) 

Where N is the number of stages, CL is load capacitance, RLOAD is load resistance, and ?INV is the intrinsic 

delay through each inverter. The ideal oscillation frequency sets expectations for pre-layout simulation results, 

while accounting for extracted parasitics will provide more accurate post-layout frequency prediction. 

Beyond ideal frequency, phase noise performance is a critical metric for ring oscillators. Phase noise arises 

from noise sources such as thermal and flicker noise modulating the oscillator waveform [8]. Lower phase 

noise is desirable for applications such as RF frequency synthesis. Design considerations such as proper 

transistor sizing and avoiding noise injection through the power rails and substrate are required to optimize 

phase noise. 

Cadence Virtuoso Design Environment 

The Cadence Virtuoso platform provides a complete integrated suite of tools for the analog and mixed-signal 

design flow [9]. The Analog Design Environment enables circuit schematic capture, simulation, and layout. 

Electrical rules checking, design rule checking, and layout-vs-schematic comparisons support physical 

verification. Post-layout extraction generates spice netlists for simulation of layout parasitics. The Virtuoso 

workflow supports ring oscillator design from schematic through layout and verification. 

Materials And Method 

The ring oscillator was designed and simulated in the 45nm PTM low standby power process [3]. A supply 

voltage of 0.8V was chosen as suitable for low-power operation at this technology node. The PTM includes 

BSIM compact models that capture nanoscale effects such as increased subthreshold conduction. A three-stage 

topology was selected to allow for faster oscillation compared to circuits with more stages. 
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Ring Oscillator Design 

The ring oscillator schematic is shown in Figure 1. Minimum length nMOS and pMOS devices were used for 

the design, with Wn = 120 nm and Wp = 80 nm chosen based on initial transient simulations to achieve rail-

to-rail output swings. W/L ratios were scaled by a factor of 2 for the buffer stages driving the output loads to 

provide additional current drive. Parasitic capacitances were initially estimated at 5 fF based on technology 

projections for 45nm minimum dimension gate and interconnect capacitances. 

 

Figure 1. Three-stage ring oscillator schematic 

Simulation and Sizing 

The design was iteratively simulated and optimized in Cadence Virtuoso using Spectre circuit simulation. 

Transient simulations verified oscillating behavior and were used to determine oscillation frequency. AC noise 

simulations characterized phase noise across offset frequencies from the carrier. Transistor sizing was tuned 

to achieve symmetric rise and fall times around 50 ps along with phase noise meeting design targets. Routed 

interconnects were estimated and modeled as parasitic resistances and capacitances during pre-layout 

simulation. 

Layout Considerations 

The oscillator layout is shown in Figure 2. Careful attention was paid to the placement of the transistors and 

routing topology to mitigate noise injection while minimizing parasitic resistances and capacitances. The 

nMOS and pMOS devices were interdigitated to improve matching between the legs of each inverter. 

Symmetrical device orientation was used to promote common-centroid matching. Wide metal connections 

were used for VDD and ground to avoid voltage drops. Common-centroid interconnections were employed for 

the delay stage interconnects. Parasitic RC extraction was performed to back-annotate layout effects prior to 

post-layout simulation. 

 

Figure 2. Ring oscillator layout in Cadence Virtuoso 

Results and Discussion 

The ring oscillator was simulated pre-layout and post-layout to verify correct functionality and match against 

theoretical performance targets. The transient simulation results in Figure 3 illustrate sustained oscillations at 

a periodic rate determined by the number of stages and propagation delay per stage. The rail-to-rail output 

swings confirm proper inverter switching. 

The pre-layout and post-layout oscillation frequency results are summarized in Table 1, along with the 

theoretical ideal oscillation frequency. The post-layout frequency matches closely with the ideal value, taking 

into account effects such as parasitic loading. 
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Table 1. Ring oscillator frequency comparison 

 Theoretical Pre-Layout Post-Layout 

Frequency 2.5 GHz 2.38 GHz 2.47 GHz 

Phase noise simulations characterized jitter in the time domain and spectral purity. The phase noise plot 

illustrates the excellent phase noise performance, with less than -100 dBc/Hz at 100 kHz offset. Optimization 

of device sizing enabled low phase noise even with minimum channel lengths. 

 

Figure 3. Ring oscillator phase noise 

The completed design meets all targeted specifications for frequency and phase noise. The functionality is 

robust against estimated process variations, with sufficient timing margins and oscillator gain. The layout 

techniques help minimize parasitic effects and coupling noise. These results validate a working ring oscillator 

implemented with 45nm nanoscale devices. 

 

Fig 4 The cycle-to-cycle jitter histogram 

This research demonstrates feasibility of analog circuit design at minimal channel lengths despite significant 

process variations. The ring oscillator represents a ubiquitous analog building block, requiring careful 

transistor sizing and layout to optimize frequency and phase noise performance. Techniques like common-

centroid layout can negate random mismatches, while proper supply routing avoids injection of digital 

switching noise. The successful implementation highlights both the design challenges and opportunities 

associated with nanoscale analog integrated circuits. 

Looking ahead, further investigation could target lower supply voltages approaching device thresholds to fully 

leverage energy efficiency benefits of advanced CMOS nodes. Statistical design methods could be employed 
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to ensure robust operation against systematic and random process variability. Extending the oscillator to 

tunable operation would increase utility for frequency synthesis applications. Other circuits such as voltage-

controlled oscillators, phase-locked loops, and crystal oscillators would present additional design challenges. 

Beyond electronics, nanotechnology promises new computing paradigms such as spintronic or DNA-based 

devices. 

 

Fig 5 Central frequency variation for different control voltages as a function of the temperature 

Conclusion 

This paper presented the design and simulation of a three-stage ring oscillator using 45nm PTM models in the 

Cadence Virtuoso design environment. The project provided hands-on experience with analog integrated 

circuit design at the nanoscale. The ring oscillator schematic was crafted with minimum length transistors and 

optimized through iterative simulation. Layout techniques focused on parasitic and noise mitigation. Post-

layout simulation results matched well with theoretical expectations, achieving 2.5 GHz oscillation with phase 

noise below -100 dBc/Hz at 100 kHz offset. The completed design demonstrates the realization of a basic 

analog building block using nanoscale devices. Further development of robust nanoelectronic design principles 

and methodologies will enable continuing Moore's law scaling for future low-power, high-performance 

integrated systems. 
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