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Abstract 

 
Antheraea assamensis (vernacular: ‘muga’) larvae is commercially reared on two 

tree species of the Lauraceae family, Persea bombycina and Litsea monopetala for 

its golden yellow, lustrous cocoon silk. Biochemical and molecular studies 

suggested that the midgut digestive enzymes and their transcripts in larvae feeding 

on P. bombycina differ from those found in larvae feeding on L. monopetala 

indicating that host plant 'choice' affects the digestive physiology of this insect. 

Ingestion of plant proteinase inhibitors is known to influence expression of 

digestive enzymes. Using reverse zymography technique trypsin and chymotrypsin 

inhibitors were detected in herbivore-induced leaves of L. monopetala and P. 

bombycina that could inhibit midgut proteinases of A. assamensis. Such 

interactions may affect proteolytic digestion in larvae reared on different host plant 

species. This work may have significance in quality of silk produced by muga 

silkworm, ultimately benefiting the silkworm rearers/industry. 

Keywords: Host Plant ‘Choice’, Digestive Enzymes, Reverse Zymogram, Midgut 

Proteinases, Plant Proteinase Inhibitor (PPIs) 

1. Introduction 
Plant proteinase inhibitors (PPI) are well known defense proteins which are induced upon herbivory. 

Ingestion of plant proteinase inhibitors is known to influence expression of digestive enzymes. 

Literature studies have cited innumerable cases of midgut proteases and PPI interaction in agricultural 

pests (1-23). Although midgut proteinases have been widely studied in Lepidopteran pests but little is 

known about PPI-gut protein interaction in the economically important silk producing lepidoptera A. 

assamensis. A few reports published indicates that PPIs are stable in the alkaline environment of the 

gut and can potentially interact with gut proteinases [23-26]. Also, the expression levels of PPIs differed 

in A. assamensis larvae when feeding on different host plants. [12,27]. Given below is a schematic 

representation of interaction of A. assamensis midgut proteinases and PPIs (Figure:1). 

 

Figure 1: Schematic representation of A. assamensis midgut proteinases and PPI interaction*. 
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Antheraea assamensis Helfer (Vernacular: “Muga”) is famed for the production of superior quality 

muga silk. The commercially reared muga larvae produces golden hued thread for which it is much 

sought after (Figure 2 a,b). A. assamensis feeds mainly on the leaves of   Litsea bombycina (Vernacular: 

“Som”) and Litsea monopetala (Vernacular “Soalu”) from Lauraceae (Figure 3 a,b ) although it has a 

large number (around 28) of other secondary and tertiary host plants [28,29]. There are no reports of 

proteinase inhibitors (PI) from leaves and seeds of Lauraceae family. A first – hand account on presence 

of herbivore -induced serine proteinase inhibitor in the leaves of the host plants is reported here. 

Knowledge of host plant PIs and their interaction with gut proteinases of A. assamensis would help in 

manipulating host plant choice and improving food ingestion by the larvae. The significance of this 

work may be manifested in quality of silk produced by this economically important insect, with 

potential implication for silkworm rearer’s.  

 

(a)                           (b) 

Figure 2 (a) Rearing of A. assamensis larvae at the State Sericulture Board Guwahati, Assam; (b) A. 

assamensis cocoon 

 

     

(a)                                                                (b) 

Figure 3 (a): Three-year old Persea bombycina tree growing at the State Sericulture Board, Guwahati, 

Assam (b) Two-year-old Litsea monopetala sapling growing in University of Delhi, Botanical garden, 

Delhi. 

2. Materials And Methods 

Preparation of A. assamensis midgut homogenates 

A hundred larvae from a single egg mass were reared from 1st instar to maturity on P. bombycina var. 

Naharapatiya and L. monopetala (commercially favored varieties) of Lauraceae family. A three-year-

old tree of each species growing at the Government Basic Muga Seed Farm, Khanapara, Guwahati, 
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Assam was used. Larvae were reared on all leaves (basal, apical, small and large) of each tree and 

collected. Midgut samples were collected during the months of September-December (Katiya Crop). 

Midguts of fourth instar larvae of A. assamensis feeding on Persea bombycina and Litsea monopetala 

were dissected and homogenized in 100mM Hydrochloric acid (HCl), 100mM N-2-

hydroxyethylpiperazine-N-2-ethane sulphonic acid (HEPES) and 100mM Tris hydroxymethyl- amino 

methane (Tris) buffer pH 8.0. The homogenate was centrifuged in an Eppendorf Centrifuge 5415 D 

(Eppendorf AG, Hamburg, Germany) at 13,200 rpm for 10 minutes and the supernatant was stored at -

20°C. Total protein was determined by the standard Bradford’s method [30] and the absorbance was 

measured at 595nm with a UV VIS Spectrophotometer 119 (Systronic Inc., India). All samples obtained 

from larvae reared on P. bombycina will be referred to as AGP1 and all samples obtained from larvae 

reared on L. monopetala will be referred to as AGP2. 

SDS-PAGE of leaf proteins and gut extracts of A. assamensis incubated with PPIs 

Fresh leaves (3-4 cm) of P. bombycina and L. monopetala proximal to those on which larvae were 

feeding were collected from the third branch of a tree growing at the Government Basic Muga Seed 

Farm, Khanapara, Guwahati (Assam). These were labelled as herbivore-induced leaf samples. Similar 

leaf samples were collected from trees on which no larvae had been reared. These were labelled as 

uninduced leaf samples. Protein from the de-veined leaves of P. bombycina and L. monopetala were 

extracted according to Hirano [31]. In brief, fresh leaves were crushed in liquid nitrogen. 1gm of the 

frozen tissue powder was homogenized in 10 ml of homogenizing buffer (0.0625 M Tris-HCl, pH 6.8, 

containing 8M urea, 2% SDS, 5% β-mercaptoethanol and 10% sucrose) and heated at 90 ºC for 5 

minutes. The homogenate obtained was centrifuged at 12,000 rpm for 25 min, and the supernatant used 

as experimental sample. Total protein estimation of the samples was done by the method of Bradford 

[30]. The Laemmli system [32] was used to separate the proteins according to their molecular weight. 

Equal amounts of the crude protein extracts of AGP1 and AGP2 were mixed with STI (5mg/ml) in the 

ratio 1:1 and incubated at 37oC. After incubation, the samples were mixed with sample buffer (0.5M 

Tris-HCl, pH-6.8, 10% glycerol, 2% SDS, 0.1% bromophenol blue and -mercaptoethanol) and boiled 

in water for 5-10 minutes. About 15g of protein was loaded in each well. Controls (with and without 

inhibitor) were kept and electrophoresis was carried out at 120V till the dye front reached the bottom 

of the gel. The gel was then stained in 0.25% Coomassie brilliant blue solution for 30 minutes and 

destained by repeated washing in the destaining solution (45% methanol, 10% glacial acetic acid, 45% 

ddH2O) for 2 hours until fine bands appear. The gels were viewed under white light.     

Reverse zymography for detection of protease inhibitors 

Endogenous protease inhibitors are potential key regulators of proteases in living organisms. Reverse 

zymography techniques are effective tools for isolating and characterizing natural protease inhibitors 

[33-35]. Reverse zymography gels were run as described below. A separating gel was poured, 

containing gelatine (10mg/ml), 30% (w/v) acrylamide, 0.8% (w/v) bis-acrylamide, 1.5M Tris pH 8.8, 

10% (v/v) SDS (10% APS and TEMED. The stacking gel consisted of a mixture of stock solution of 

30% (w/v) acrylamide, 0.8% (w/v) bisacrylamide, and 0.5M Tris-HCl pH 6.8, was cast with combs on 

top of the separating gel. The crude protein extracts of the seeds and leaves of P. bombycina and L. 

monopetala were prepared according to Hirano and Kanellis et al [31, 36]. Un-induced and herbivore 

induced leaf samples were used. The protocol of Hirano [31] has been described in the earlier paragraph. 

In the protocol of Kanellis et al [36] 4 ml of the extraction buffer containing 50mM Tris (pH 7.4), 0.02M 

NaCl, 20mM NaHCO3, 20mM MgSO4, 10mM EDTA and 5mM β-Mercaptoethanol was added to 1 gm 

of grinded seed and leaf tissue of the host plants. The mixture was allowed to stand on ice for 15 minutes 

with occasional stirring and the centrifuged at 13, 000 rpm for 20 minutes. The supernatant was used 

immediately without addition of exogenous inhibitors for reverse zymography. Equal amount of protein 

(20µg) of all the samples were prepared by adding the appropriate non denaturing loading buffer (0.5M 

Tris pH 6.8, 10% glycerol, 2% SDS and 0.1% bromophenol blue). The gel was run at 120V for about 

90 minutes at 4oC till the dye front reached the bottom of the gel. The gel was washed in 2.5% Triton 

X-100 (2-3 times) for 45 minutes with gentle shaking. The gel was incubated overnight at 37oC in A. 

assamensis gut extracts containing active proteases reared on P. bombycina (AGP1) and L. monopetala 

(AGP2) and with commercially available pure enzyme preparations (bovine trypsin and bovine 

chymotrypsin). The gel was stained with 0.5% Coomassie Blue R-250 solution and destained with 

methanol and acetic acid until fine dark clear bands appeared.  
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3. Results and Discussion 

Resistance of heterologous proteinase inhibitors to proteolytic digestion by midgut extracts from 

AGP1 and AGP2 

There are no reports of proteinase inhibitors (PI) from leaves of Lauraceae family. In order to develop 

a technique for identifying PI in leaf tissues of three-year-old trees of Persea bombycina and Litsea 

monopetala, several preliminary experiments were conducted. The aim of one such experiment was to 

determine if PIs persist in the gut of A. assamensis.  If PIs are degraded by insect midgut enzymes, then 

the effect of ingesting PIs is unlikely to cause differential expression of the insect digestive enzymes. 

Hence, heterologous PIs were added to midgut extracts containing active serine proteinases, for varying 

lengths of time. Their persistence in the protease-rich, alkaline environment was monitored by SDS-

PAGE. Figure 4 shows that STI was not degraded when incubated with midgut samples from A. 

assamensis reared on P. bombycina (AGP1) and L. monopetala (AGP2) for 20 minutes. Similar results 

showing resistance of SBBI and LBTI to midgut proteinases of A. assamensis were observed (not 

shown). These results indicated that serine proteinase inhibitors were not susceptible to proteolysis by 

midgut enzymes present in A. assamensis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: SDS-PAGE showing resistance of Plant proteinase inhibitors (PPIs) to proteolysis by larval 

midgut proteases. Lane 1: High molecular weight protein marker (BioRad Inc., USA), Lane 2: AGP1, 

Lane 3: AGP1+STI (5µg/µl), Lane 4: AGP2, Lane 5: AGP2+STI (5µg/µl), Lane 6: P. bombycina leaf 

extract, Lane 7: L. monopetala leaf extract. 

Detection of serine proteinase inhibitors in seeds and leaves of P. bombycina and L. monopetala 

using reverse zymography with mammalian trypsin and chymotrypsin 

Published protocols for preparing leaf extracts from P. bombycina and L. monopetala do not yield 

discrete bands and do not show up well on SDS PAGE [37]. Hence, two protocols were developed to 

obtain relatively intact protein extracts of leaf tissues from the two host plants. The first one was 

modified from Hirano [31]; while the second one was modified from Kanellis et al [36]. The main 

distinction between the protocols involved the use of 8M Urea in the extraction buffer [31] as compared 

to the use of sodium acetate buffer at pH 5 with β mercapto-ethanol Kanellis [36]. The main 

modification employed for both buffers involved exclusion of commercially available inhibitor 

cocktails usually added to plant extraction buffers. This was logical as the aim of the experiment was 

to detect endogenous plant proteinase inhibitors. The Kanellis [36] protocol yielded discernable leaf 

protein extracts from the two host species (Figure 4: Lanes 5 and 6). Figure 5 shows reverse zymography 

of seed extracts and leaf extracts of P. bombycina and L. monopetala with porcine trypsin and bovine 

chymotrypsin. It was interesting to note that the seed extracts prepared by the modified Hirano [31] 

protocol yielded results for both plant species. Three bands were visible with the seed extracts (Figure 

5 Lanes ‘S’). No results were obtained with the leaf extracts using this protocol. In contrast, an intense 

single band was observed with leaf extracts from P. bombycina and L. monopetala with the Kanellis et 

al. [36] protocol. As expected, STI used as a positive control was also detected (Figure 5 Lanes ‘C’). 

The occurrence of PIs in seeds and leaves of P. bombycina and L. monopetala was thus demonstrated. 

1            2     3  4    5  6      7 
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Even though molecular weights cannot be extrapolated from such zymograms, it seemed that the 

mobility of trypsin and/ or chymotrypsin PIs detected in the seeds and leaves of each species were 

different. On the other hand, mobility of seed PIs of both host plant species were similar in P. bombycina 

and L. monopetala. The mobility of leaf PIs were also similar for P. bombycina and L. monopetala. 

 

Figure 5: Detection of plant proteinase inhibitors using reverse zymography (a, b) P. bombycina 

herbivore-induced leaf (L) and seed extracts (S) incubated with Bovine Trypsin (BT) and Bovine 

Chymotrypsin (BC) respectively, (c, d) refer to same experiments with L. monopetala extracts. Lane C 

shows Soybean trypsin Inhibitor (SKTI) as a positive control. 

Reverse zymography reveals proteinase inhibitors in un-induced and herbivore-induced leaf 

tissues of P. bombycina and L. monopetala. 

In order to detect PIs in P. bombycina and L. monopetala that may influence the profile of midgut serine 

proteinases when ingested by larval A. assamensis, un-induced (U) and herbivore-induced (HI) leaves 

of three-year-old trees were collected. Un-induced leaves were collected from trees on which no 

herbivore had fed, while induced leaves collected were proximal to those on which fourth instar larvae 

had fed. Equal amounts of leaf extracts prepared in extraction buffer according to Kanellis et al. [36] 

were evaluated by reverse zymograms using AGP1 and AGP2 midgut extracts. AGP1 and AGP2 

midgut extracts contained trypsin and chymotrypsin [12]. Figure 6 a, b showed the presence of trypsin 

and/or chymotrypsin inhibitors in both induced and un-induced leaf extracts from each species. Three 

minor bands were seen in un-induced leaf extracts of P. bombycina while a prominent band of low 

mobility was seen in induced leaf extracts when incubated with AGP1. In the case of L. monopetala, a 

prominent band of low mobility was visible in both un-induced and induced leaf tissues when incubated 

with AGP1 and AGP2. It is of course feasible that the un-induced plant of L. monopetala had been 

wounded inadvertently and was expressing a wound-inducible PI. In any case, trypsin and/or 

chymotrypsin inhibitors were detected suggesting their possible role in influencing midgut serine 

proteinases if and when ingested by A. assamensis larvae. Similar results were obtained with AGP2. 

The suggested sizes of induced trypsin and/or chymotrypsin inhibitor (prominent band of low mobility) 

were similar for both host plant species. Further studies are required to characterize the PIs in these 

plant species induced in response to A. assamensis herbivory. 
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Figure 6: Detection of plant proteinase inhibitors using reverse zymography (A) P. bombycina and L. 

monopetala herbivore uninduced and induced leaf extracts incubated with AGP1 and (B) refers to the 

same samples incubated with AGP2. Lane 1 shows Soybean trypsin Inhibitor (SKTI) as a positive 

control, Lanes 2 and 3 are uninduced and induced leaf extracts of P. bombycina, Lanes 4 and 5 are 

uninduced and induced leaf extracts of L. monopetala. 

In order to determine whether PPIs are stable in the midgut of A. assamensis as reported in [12, 27] and 

can also interact differentially with gut proteinases, midgut extracts of AGP1 and AGP2 were incubated 

with varying amounts of the inhibitors for different periods of time. Figure 4 shows that STI was 

resistant to proteolysis by enzymes in AGP1 and AGP2. This in vitro resistance of STI to proteolysis 

suggested that PPIs, if ingested, might persist in the gut and influence gene expression of midgut trypsin 

and chymotrypsins in fourth instar A. assamensis feeding on P. bombycina or L. monopetala.  

The presence of herbivore-induced PPIs in leaf tissues of P. bombycina and L. monopetala are 

unknown. A sole report of a cysteine proteinase inhibitor is available from the fruit tissues of Avocado, 

Persea americana [36]. In order to determine the presence of PPIs, techniques were developed to isolate 

intact proteins from tanniferous, mucilaginaous leaf extracts of P. bombycina and L. monopetala and to 

detect inhibitors of serine proteinases using reverse zymography. In the first set of experiments with 

reverse zymography, plant proteinase inhibitors resistant to hydrolysis by commercially available pure 

porcine trypsin and bovine chymotrypsin were detected in seed and leaf extracts of P. bombycina and 

L. monopetala (Figure 5 a,b,c,d). Henceforth, they will be referred to as serine proteinase inhibitors 

(SPIs). Two bands were observed in seed extracts of each species, probably representing distinct gene 

products or isoforms. Presence of SPI isoforms have been reported from a variety of plants [38-41]. It 

was interesting to note that P. bombycina and L. monopetala seed SPIs had similar mobility on these 

reverse zymograms. In contrast to the two bands seen with seeds, leaf extracts of both P. bombycina 

and L. monopetala contained a prominent single SPI that bound to porcine trypsin and bovine 

chymotrypsin. The mobility of the leaf SPI was different from the seed SPI. The occurrence of different 

SPIs in different tissues of the same species has been reported earlier [42,43].  On the flip side, same 

tissues of different plant species have been known to contain SPIs of similar molecular weight [8,40]. 

 

https://jazindia.com/


Zymograms as a Tool to Detect PPIs in Host plants of Antheraea Assamensis  

 

Available online at: https://jazindia.com  - 66 - 

4.  Conclusion 

P. bombycina and L. monopetala are sympatric species with similar range [44]. These species of the 

Lauraceae family belong to different taxonomic tribes but can support rearing of A. assamensis larvae. 

Insects feeding on each species showed differential expression of midgut proteinases, suggesting that 

ingested leaf tissues were qualitatively different [12]. This difference may be in the constituent PPIs 

that interact with midgut proteinases when ingested. In order to investigate the occurrence of PPIs that 

may interact with larval midgut proteinases, leaf extracts were collected from un-induced and herbivore-

induced leaves of each species. Reverse zymograms with these leaf extracts incubated with midgut 

extracts from AGP1 and AGP2 containing trypsin and chymotrypsin were compared (Figure 6 a, b). In 

un-induced leaf samples of P. bombycina, three bands of PPIs or their isoforms were indicated. In 

contrast, the herbivore-induced samples contained a prominent band indicating up-regulation of a single 

PPI or de novo synthesis of a wound-inducible PPI. In L. monopetala no differences were observed 

between the un-induced and herbivore induced samples but this may be due to the fact that the plants 

from which the samples were collected were unknowingly induced! It is particularly interesting that the 

mobility of herbivore-induced leaf PPI in P. bombycina resembled a PPI from L. monopetala. In turn, 

the mobility of herbivore-induced PPI detected in both species by reverse zymography with AGP1 and 

AGP2 midgut enzymes resembled the mobility of SPI observed in reverse zymograms with purified 

trypsin and chymotrypsin, suggesting that the PPIs seen in Figure 5 a,b were SPIs. These results 

suggested that (i) SPIs were present in leaves of P. bombycina and L. monopetala that could bind to 

midgut serine proteinases of A. assamensis (ii) mobility of leaf SPIs in P. bombycina and L. monopetala 

were similar and that (iii) at least one SPI in each species was wound –inducible and responded to 

herbivory. Further research into the isolation, sequencing and characterization of inhibitors from P. 

bombycina and L. monopetala is required.  
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