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Abstract 

 

Artificial neural networks (ANNs) have been developed to predict the clinical 

significance of drug-drug interactions (DDIs) for a set of 35 pharmaceutical 

drugs using data compiled from the Web-based resources, Lexi- comp and 

Vidal, with inputs furnished by various drug pharmacokinetic (PK) and/or 

pharmacodynamic (PD) properties, and/or drug-enzyme interaction data. 

Success in prediction of DDI significance was found to vary according to the 

drug properties used as ANN input, and also varied with the DDI dataset used 

in training. The Lexicomp® dataset is found to give predictions marginally 

better than those obtained using the Vidal® dataset, with the best prediction 

of minor DDIs achieved using a multi-layer perceptron (MLP) model trained 

using enzyme variables alone (F1 82%) and the best prediction of major DDIs 

achieved using a MLP model trained on PK/PD properties alone (F1 54%). 

Given a more comprehensive and more consistent dataset of DDI data, we 

conclude that machine learning tools could be used to acquire new knowledge 

on DDIs, and could thus facilitate the regulatory agencies, and 

pharmacovigilance of newly licensed drugs. 

 

Keywords: drug-drug interactions, pharmacovigilance, machine learning, 

artificial neural networks 

 

1. INTRODUCTION 
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Recent years have witnessed an increasing number of publically available databases for drug knowledge 

including chemical and pharmacological information [1], drug-protein relationships and drug mechanisms of 

action [2,3] and adverse effects [4,5]. 

The creation of these various resources has afforded new opportunities in drug discovery and development, 

wherein data mining techniques are employed, for example, to deduce combinations of chemical and bio- 

logical characteristics of use in drug repurposing [6,7] – that is, the  identification of new therapeutic indications 

for approved drugs – and also to allow the prediction of drug-protein relationships [8], and likely drug side 

effects [9]. Such predictions as these are of great relevance in pharmacovigilance, providing for the detection, 

assessment, under- standing, and prevention of the adverse effects of drugs (and any other drug-related 

problems) [10]. Licensed drugs are frequently seen to cause adverse effects that are not observed in the clinical 

trials con- ducted prior to approval when used in large populations comprising individuals with very different 

physiological and pathological characteristics. The early detection of these adverse effects is crucial to ensure 

patient safety and is the primary purpose of pharmacovigilance. 

Among the various adverse effects of interest, those that arise as a con- sequence of drug-drug interactions 

(DDIs) are arguably the most com- mon. These adverse effects are seen in patients that are prescribed two or 

more drugs that interact in some way. In these cases, one of the drugs taken affects the blood levels and/or 

efficacy of a co- administered drug, thereby giving rise to unexpected toxicological problems or therapeutic 

failure [11]. Problems of this nature have seen increased frequency of late, partly because of the increased 

numbers of elderly patients that suffer multiple co-morbidities [12] or the common use of cocktails of drugs to 

treat complex pathologies [13]. 

Historically, information on DDIs was collated in manually curated compendia [11], [14], and many of these 

resources are nowadays accessible online. There are many such pharmacological databases and semi- 

structured resources that are available to assist healthcare professionals in the prevention of DDIs (e.g., Vidal® 

and Lexicomp®) but their quality is variable and the consistency of their contents rather limited. 

One of the most relevant discrepancies among the different DDI information sources is their assessment of the 

significance of the recorded interactions. Here, significance refers to the clinical relevance of the DDI, and 

describes the risk that the DDI might pose for a patient’s health [14]. For any given DDI, the clinical 

significance will vary ac- cording to the nature of the patient – their age, ethnicity, and genetic profile – and 

also on the drugs’ pharmacological characteristics – including their target(s), metabolism, and side effects. The 

grading of DDI significance is generally assessed subjectively, through a pre- established set of evaluation 

criteria, and thus discrepancies among different DDI compendia and information sources are very common. 

In- deed, different researchers have identified important discrepancies between different information 

compendia [15] and between these and criteria laid down by clinicians [16]. These studies highlight the extreme 

difficulty of assessing the severity of DDIs. One might expect, however, that most of the information sources 

would show a high degree of overlap, at least for those DDIs that would have severe health consequences 

(interactions that we may thus consider as major DDIs), and a similar degree of overlap for those DDIs that 

would not be expected to do so (interactions which we might thus call minor DDIs). The development of an 

in-silico system that could automatically identify DDIs and provide an initial assessment of their likely clinical 

significance (classifying each as major or minor) would likely be of great benefit, therefore, in the field of 

signal detection in pharmacovigilance. 

The prediction of DDIs through the application of machine learning methods is an active research field. Cheng 

et al. [17] used phenotypic, therapeutic, chemical structure and genomic similarity between drugs as input 

properties to train and evaluate different machine learning methods: naive Bayes (NB), decision tree (DT), k-

nearest neighbors (k- NN), logistic regression (LR), and support vector machines (SVM). The last of these 

proved to lead to the highest performance for the pre- diction of DDIs between 721 drugs. Recently, Sridhar et 

al. [18] de- scribed a probabilistic approach using Probabilistic Soft Logic (PSL) and different drug-drug and 

protein-protein similarity measures as input variables. Focusing on enzyme-related DDIs only, Hunta et al. [19] 

evaluated the performance of ANN, SVM and k-NN for the prediction of DDIs, while Polak et al. [20] 

constructed several ANN models using drug physicochemical and metabolic properties of drugs as input data. 

One of the challenges in all these projects is the identification of reliable negative examples of non-interacting 

drug pairs. So far, these approaches have used pairs of drugs not included in the selected information source as 

examples of non-DDIs. Because of the aforementioned limitations of manually created DDI compendia and 

databases [15,16], it is impossible to know if one pair of drugs is not described in the selected source because 

it is not known yet or because there is no DDI between the drugs [21]. In contrast, prediction of significance 

of DDIs based on examples of graded DDIs could overcome this issue, enabling the distinction between minor 
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(or potentially non-harmful) and major (or potentially serious) DDIs. However, to the best of our knowledge 

there has been no attempt made to date to develop a more sophisticated reasoning engine to furnish systematic 

predictions of DDI severity. 

In the work reported here, we describe a novel approach for the identification of clinically relevant DDIs using 

machine learning techniques; we use input provided by relevant chemical and pharmacological drug 

characteristics extracted from online information sources, together with a bespoke DDI dataset containing 

information extracted from known DDI compendia. 

 

2 MATERIALS AND METHODS 

 

2.1Drug data 

A total of 35 drugs were selected for study, according to the criteria that each of those selected exhibit a high 

potential for interaction with other drugs and/or are representative of a major therapeutic class and had no 

missing data for any of the input variables. Many of the selected drugs were previously used in related work 

by Vitry et al. [15]. 

Through a review of the general literature on DDIs [11], [14], those drug characteristics considered relevant to 

their interaction profiles were identified. The 20 drug characteristics selected included both pharmacokinetic 

(PK) properties − those descriptive of drug disposition in the body − and pharmacodynamic (PD) properties − 

those descriptive of the drugs’ effects in patients. The drug properties data were taken from the manually-

curated database DrugBank [1], the online ver-sions of Martindale [22] and Clarke's Analysis of Drugs and 

Poisons [23] and the Database of Intravenous Pharmacokinetic Parameters in Humans [24]. 

Given the frequency with which DDIs result as a consequence of drug- induced changes in the activity of 

metabolic enzymes [25], data were also collected on drug-enzyme relationships, using information extract- ed 

from the SuperCyp database [26]. We collected drug relationships with different isoenzymes and – for each 

drug in a DDI drug pair – we represented these as a set of 26 binary variables (with 1 signifying an effect of a 

given drug on a given enzyme, and 0 signifying no such relationship). 

 

 2.2 DDI data 

Information on DDIs was collated from the Lexicomp® and Vidal® compendia. In the former case, the online 

Lexi-Interact™ Online Inter- action Service, was used to acquire the DDI information [27]. DDI in- formation 

from both compendia were graded according to their respective five and four point scales. In the case of 

Lexicomp®, the DDIs were graded from ‘no known interaction’ through to ‘avoid combination’. In the case of 

Vidal®, the DDIs were graded from ‘none’ to ‘contraindication’ [28] (Table 1). The two sets of DDI data were 

compiled separately, and are referred to below as the DDI-L and DDI-V datasets. 

 

2.3 Construction of in-silico models for DDI prediction 

Artificial neural network (ANN) models to predict DDIs were developed using the data mining tools provided 

in Statistical. This application provides a wide selection of network types and the training algorithms BFGS 

(Broyden Fletcher-Goldfarb-Shanno) and Scaled Conjugate Gradient algorithms [29]. 

Separate models were trained and tested using the datasets described above, which included a total of 142 

variables, and using different combinations of drug properties. Experiments were initially performed to predict 

interacting vs. non-interacting drug pairs and these then re- peated to predict the significance/grade of the DDIs. 

In an initial analysis, we explored two types of ANN architecture: Multilayer Perceptron Neural Networks 

(MLP) and Radial Basis Function Neural Networks (RBF). Only MLP networks with a number of hidden units 

in the range of 8-20 were retrieved as the best ones. 

For the construction of the final models, therefore, the methodology adopted was as follows: 200 MLP networks 

were trained with a range of 8-20 hidden units retrieving the best five networks. Activation functions were not 

restricted, so we explored the set of neuron activation functions for the hidden and output neurons available in 

Statistical identity, logistic sigmoid, tanh and exponential. The error function used was either sum of squares 

(SOS) or cross entropy. Overfitting was pre- vented by manually dividing the input data into training (70% of 

the dataset), test (10%) and validation (20%) datasets, ensuring a balanced representation in each of these for 

all classes. From the five best networks per analysis, we selected the one with best performance for training, 

test and validation sets. The generalization ability of the models was quantified by means of precision (P), 

recall (R) and F1 in the validation dataset. 

 

3 Results 
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The two DDI datasets differ considerably in terms of both their cover- age and their significance gradings. The 

total number of drug pairs is 561, of which 210 (37%) are labelled as interacting in Lexicomp®, while in 

Vidal® they are only 124 (22%). The overlap between them is small (421 coincidences), with only 97 DDIs 

and 324 non-DDIs in common. Regarding significance grading, the number of coincidences is also limited 

(Table 1). Because of the different scales used in the two DDI datasets and the small number of examples for 

some types (such as contraindication/avoid combination), we combined the examples into two gradings: minor 

and major DDIs. 

 

Table 1. Occurrences of DDIs (n) by significance grade in Vidal® and Lexicomp® datasets and 

common occurrences. 

 

 Significance grade 

Vidal/Lexicomp 

n Lexicomp n Vidal Matches 

 none/not known 351 437 324 

Minor to take into account 10 - - 

precaution for use/monitor therapy 139 42 30 

Major avoid/consider therapy modification 52 56 14 

contraindication/avoid combination 9 26 3 

 

As shown in Table 2, results vary for the different datasets and the dif- ferent input variables. In the case of the 

DDI-L dataset, the best results are achieved using enzyme properties alone with a MLP network with 204-10-

2 input, hidden and output neurons, respectively. The hidden activation function is exponential and the output 

activation function is logistic. The training algorithm is BFGS and the error function SOS. Although the results 

show higher relevance of enzyme properties alone compared to a combination of all variables, this difference 

is very small (F1 64% vs 60%). In contrast, the use of PK/PD variables alone output formed the other models 

in the DDI-V dataset, mainly because of a de- crease in recall. As with the previous dataset, the performance 

of the best model does not differ greatly from that achieved through use of all combined properties (F1 58% vs 

50%). This model is a MLP with 101- 14-2 input, hidden and output units trained using a BFGS algorithm. The 

hidden and output activation functions are exponential and logistic respectively, while the error function is 

SOS. 

Table 2. Evaluation metrics for DDI prediction models in the DDI-L and DDI-V datasets for validation 

instances. 

 

Table 2. Evaluation metrics for DDI prediction models in the DDI-L and DDI-V datasets for 

validation instances. 

 DDI-Lexicomp dataset DDI-Vidal dataset 

Variables Precision Recall F1 Precision Recall F1 

PK/PD 0.75 0.429 0.545 0.577 0.60 0.588 

Enzyme 0.649 0.632 0.64 0.571 0.32 0.41 

PK/PD + enzyme 0.71 0.524 0.603 0.521 0.48 0.5 

 

Regarding the prediction of the significance of DDIs, we created another six different models using the same 

datasets DDI-L and DDI-V but excluding the non-interacting pairs. As with the results presented above, it is 

not possible to establish a relationship between a set of variables and better models’ performance (Table 3). 

The two datasets are unbalanced and both showed better performance for the majoritarian class (minor in DDI-

L dataset and major in DDI-V dataset). A larger DDI dataset would solve this issue and would allow us to 

establish more significance classes. 

 

Table 3. Evaluation metrics for significance prediction models in the DDI-L and DDI-V datasets for validation 

instances classified as minor and major DDIs. 

DDI-Lexicomp dataset 

Variables P minor P major R minor R major F1 minor F1 major 

PK/PD 0.821 0.5 0.767 0.583 0.793 0.538 

Enzyme 0.806 0.545 0. 833 0.5 0.82 0.522 
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PK/PD + enzyme 0.722 0. 333 0. 867 0.167 0.789 0.222 

 

DDI-Vidal dataset 

Variables P minor P major R minor R major F1 minor F1 major 

PK/PD 0.857 0.882 0.75 0.938 0.8 0.909 

Enzyme 0.25 0.833 0.625 0.938 0.357 0.882 

PK/PD + enzyme 0. 667 0.867 0.75 0.813 0.71 0.839 

 

Although the best results correspond to the model based on PK/PD variables in the DDI-V dataset, the small 

number of instances (194 DDIs) and the high results suggest that the model might be over-fitted. There- fore, 

we believe that the most reliable results correspond to the model trained using enzyme variables alone for 

minor DDIs (F1 82%) and the model based on PK/PD properties alone for major DDIs (F1 54%) in the DDI-

L dataset. The first model is a MLP with 204-16-2 input, hid- den and output units and hidden and output 

activation function than. The second one is a MLP with 100-13-2 input, hidden and output neurons with 

exponential and identity hidden and output activation functions. Both models are trained with a BFGS 

algorithm and use SOS as error function. 

 

4 DISCUSSION AND CONCLUSIONS 

 

Here, we have described a preliminary analysis for the prediction of DDIs and their clinical significance 

through the creation of machine learning models that exploit drug information collected from different 

information sources available on the web. 

Different research groups have applied machine learning for the prediction of DDIs. These projects differ 

considerably in the original datasets, the properties used as input variables, the machine learning methods 

studied and the evaluation of their performance. Thus, a straight com- parison with our results is difficult and 

beyond the scope of this project. The closest work in terms of evaluation metrics is the prediction of DDIs 

based on a probabilistic approach using PSL, which reported an F1 of 67% on a dataset of 4,293 known 

interactions between 315 drugs. This approach outperformed state-of-the-art works for DDI prediction that 

obtained F1 values of 51% and 60% [18]. 

In our case, the ANN models led to F1 of 64% and 59% for the validation instances in the DDI-L and DDI-V 

datasets, respectively. We believe that there is still room for improvement, in part because the en- zyme 

properties included in our approach represent only a relatively small selection of those likely to lead to DDIs. 

However, there are many different DDI mechanisms not related to metabolic processes [11]. Therefore, in our 

future work we plan to include other drug- protein relationships – including targets, transporters and carriers – 

that will enable the identification of DDIs occurring by other mechanisms. Also, we believe that representation 

of adverse effects profiles will be very useful to identify DDIs due to the addition of side effects [30]. 

The previous approaches rely on unknown DDIs as examples of non- interacting pairs, which may lead to 

incorrect predictions and hinder the identification of new DDIs. In contrast, we have proposed a new strategy 

based on the prediction of the significance of known DDIs. Our model yielded interesting results, with an F1 

of 82% for the best model. To the best of our knowledge, this is the first work attempting the pre- diction of 

DDI significance. The main limitations are, however, the size of the current dataset, the inconsistent 

information between different DDI sources and the frequent missing data for some input variables. Automatic 

methods for knowledge extraction from the web is crucial for the creation of a larger dataset of graded DDIs 

combining consistent information from different sources, which will lead to more sophisticated prediction 

models. 

We believe that further improvements in this area could represent an important tool in pharmacovigilance, for 

example as an initial signal detection tool for the editorial boards maintaining and updating current DDI 

compendia. 
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