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Abstract   

   

Non-destructive testing (NDT) techniques are frequently applied in the 

field to evaluate the compressive strength of concrete in the construction 

sector. NDT techniques are comparatively inexpensive and do not harm the 

current structure. The ultrasonic pulse velocity (UPV) test and the rebound 

hammer (RH) test are two common NDT techniques. The concrete 

compressive strength estimates are not particularly precise when compared 

to the outcomes of the destructive tests, which is one of the main 

disadvantages of the RH and UPV tests. The researchers used artificial 

intelligence prediction models to examine the correlations between the 

input values—the outcomes of the two NDT tests—and the output values—

concrete strength—in order to enhance the estimation of concrete strength. 

In cooperation with a material testing facility and the Professional Civil 

Engineer Association, in-situ NDT data from 98 samples were gathered. 

Both conventional statistical and artificial intelligence (AI) prediction 

models were developed and validated using in-situ NDT data. The 

analysis's findings demonstrated that, in comparison to statistical regression 

models, artificial intelligence prediction models yield more accurate 

estimations. When AI methods (ANNs, SVM, and ANFIS) are used to 

predict concrete compressive strength in RH and UPV tests, the study 

findings demonstrate a considerable improvement. 
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1. Introduction 

 

These days, a wide range of artificial intelligence (AI) techniques, such as support vector machines (SVM), 

adaptive neural fuzzy inference systems (ANFIS), and artificial neural networks (ANNs), find extensive use 

in research across numerous domains. Notably, a number of study findings [1–5] show that ANNs, SVMs, and 

ANFIS are successful AI prediction techniques. Non-destructive testing (NDT) techniques are essential for 

determining the compressive strength of concrete in the construction sector. These approaches, which are quite 

simple to use and reasonably priced, are crucial substitutes for destructive testing. The quality of in-situ cast 

concrete may differ from that of destructive testing in a lab environment for a variety of reasons, including 

installation, transporting, tamping, and curing. As a result, examining core samples from existing structures 

becomes the preferable choice, despite the fact that it is occasionally unfeasible or might cause structural 

damage during drilling. For non-destructive evaluation, NDT techniques including Ultrasonic Pulse Velocity 

(UPV) testing and Rebound Hammer (RH) testing are therefore recommended [6]. In order to perform the RH 

test, the rebound hammer's plunger must be pressed up against the concrete surface. The mass rebound is then 

measured using a graduated scale, and the rebound value is then converted to a rebound number or rebound 

index. Next, using a conversion table that the manufacturer provides, the compressive strength is computed [7, 

8]. Conversely, ultrasonic pulse wave (UPV) tests measure the time it takes for an ultrasonic pulse wave to 

propagate through concrete samples; higher velocities of the wave indicate higher quality samples [9, 10]. In 

order to improve concrete compressive strength predictions, this study analyzes Silver Schmidt RH and UPV 

test results using artificial intelligence approaches. The ultimate objective is to create more accurate prediction 

models using both artificial intelligence models and conventional statistical techniques [11,12]. To create 

prediction models, this study uses ANNs, SVMs, and ANFIS. Comparing the estimation findings to more 

conventional estimating techniques, there is a noticeable improvement. For the purpose of the investigation, 

98 in-situ test samples were gathered. Of them, 28 samples were utilized for model validation, and 70 were 

selected at random to serve as the training dataset. Using the sample data, conventional statistical models and 

artificial intelligence models were created and evaluated. The analysis's findings demonstrated that the AI 

models may produce more accurate predictions of concrete's compressive strength. 

 

2. Research Significance 

 

While lab concrete samples were utilized in the majority of earlier studies to evaluate the compressive strength 

of concrete, this study employs drilled samples from actual structures for its NDT. The use of artificial 

intelligence and conventional statistical analysis techniques is utilized to examine the correlation between the 

SONREB (UPV + RH) test results and the compressive strength of the concrete samples. Additional samples 

from other currently-existing buildings might be gathered for additional investigation in future studies. Other 

non-destructive techniques can also be included for additional research. 

 

3. Literature Review 

 

Destructive procedures are often avoided when evaluating concrete structures because of the possible harm 

they might cause. Non-destructive testing (NDT) techniques are becoming more and more popular as 

alternatives since they use very basic test equipment and need little sample preparation [13]. Due to limitations 

in laboratory equipment, these nondestructive testing (NDT) methods—which are preferred for forecasting 

concrete compressive strength—involve assessing the empirical connection between material strength and 

NDT parameters [14]. The link between the two is explained in detail by the manufacturers, and different types 

of concrete require calibration [15, 16]. 

Two popular NDT techniques for evaluating concrete qualities are the Ultrasonic Pulse Velocity (UPV) test 

and the Rebound Hammer (RH) test. In the RH test, an elastic mass is used to strike the concrete surface. The 

rebound is measured, and the rebound number is interpreted as a measure of the concrete's strength. 

Nonetheless, a variety of variables, including surface smoothness and moisture content, might affect the 
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rebound number. It varies for different concrete compositions, despite attempts to develop a general connection 

[17]. 

Ultrasonic pulse wave velocity (UPV) is used in the test to assess material strength. Variations in this velocity 

might be indicative of internal faults, changes in material condition, and more. Nevertheless, not all types of 

concrete can benefit from the UPV process, particularly those with uneven surfaces or water-filled fissures. 

Coupling gels are employed, taking into account variables such as moisture content, water/cement ratio, and 

aggregate size, to improve accuracy. The intricacy of these variables influences the irregularity of ultrasonic 

waves and, in turn, impacts the estimation of concrete compressive strength in non-destructive testing. Neural 

networks have been the main focus of current study when utilizing AI to forecast concrete strength. These 

studies have employed databases that were gathered from earlier research projects. Asteris and Mokos' usage 

of ANNs, Gholamreza and Arash's hybrid AI technique, and Bonagura and Bobile's verification of artificial 

neural techniques are a few noteworthy instances. To create and evaluate concrete compressive strength 

prediction models, other AI techniques like Support Vector Machines (SVMs) and Adaptive Neural Fuzzy 

Inference Systems (ANFIS) have been used. 

 

4. Experiment Methodology 

 

Together with a material testing facility in Taiwan, the data was gathered. The raw data material is secret 

according to a non-disclosure agreement signed by the authors of this study. As a result, only a restricted amount 

of data may be made public. For this study, data from 98 samples in total were gathered. The prediction model 

in this work was created using three AI techniques: ANNs, SVM, and ANFIS. Using AI was predicted to 

increase the model's performance in predicting concrete compressive strength, especially when compared to 

traditional methods. Khademi [18] states that while the prediction models' generalizability can be improved, 

further research is necessary to determine how useful they are. 

 

4.1. Artificial Intelligence Prediction Methods 

The concrete compressive strength prediction models for the RH and UPV tests are created using ANNs, SVM, 

and ANFIS. These models are created and utilized for a wide range of non-linear issues. This research develops 

prediction models to evaluate concrete compressive strength using these three methodologies in an effort to 

look for more accurate prediction outcomes. 

4.1.1. Multilayer-Feedforward Neural Network 

Neurons in the networks are grouped in layers for multi-layer ANNs. The outputs of one layer become the 

inputs of the next in a multilayered feed-forward neural network (FFNN). Hidden layers are those that lie 

between the input and output layers. An increased number of hidden layers suggests that the network's 

approximation function is more sophisticated. Within a finite collection of patterns, one or two hidden layers 

can approximate an arbitrarily complicated mapping. 

4.1.2. Overview of Artificial Neural Networks 

Two key functions of the human brain are simulated by artificial neural networks: learning and adapting. 

Artificial Neural Networks (ANNs) have found widespread use in several engineering domains, including 

pattern recognition, system identification, system model and control, and classification tasks. According to 

earlier studies, ANNs perform better than more conventional techniques like multivariate analysis and multiple 

regression analysis. A highly linked system with basic processing components may understand the intricate 

connection between independent and dependent variables in artificial neural networks (ANNs). An information 

processing system unit called a neuron is described as having an activation function and a connecting 

connection, which is a summation with or without bias.  

4.1.3. General Linear Regression 

General linear regression (GLR) estimates the correlation between inputs and outputs to ascertain the reaction 

of a dependent variable, or response variable, to the independent variables, or predictors. Both linear and non-

linear regression fall within the GLR category. In linear regression, the optimal hyperplane is used to maximize 

the margin of the input training data. The training sample with the smallest distance to the hyperplane inside 

the interval {−1, +1} is considered the hyperplane boundary. A mapping function Φ is used in non-linear 

regression to convert the data into a high dimension feature space. 

4.1.4. Radial Basis Function Neural Network 

Samarasinghe [19] suggested the radial basis function neuron network (RBFNN) as an alternative multilayered 

feed-forward neural network. The input layer, one hidden layer, and the output layer make up an RBFNN's 

three layers. RBFNN offers various advantages to FFNN, including a faster training rate and a lower 
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susceptibility to issues with non-stationary inputs. The two kinds of neural networks are distinguished by the 

hidden neurons. RBFNN employs the Gaussian radial basis function, whereas FFNN utilizes the S-shaped 

sigmoid activation function. Vector linking weights, or w, exist in RBFNN between the hidden layer and the 

output layer. But between the input layer and the hidden layer, there are no weights. 

4.2. In-Situ NDT Test and Lab Destructive Test 

A qualified material testing facility with expertise in both destructive and nondestructive testing on building 

materials was partnered with this study. Rebound Hammer (RH) and Ultrasonic Pulse Velocity (UPV), two 

nondestructive tests (NDT), were performed on 98 non-structural beams in the basement of a sizable apartment 

building. The width and depth of the beams were 50 and 70 cm, respectively. Ten RH measurements were 

obtained for every beam using the Silver Schmidt N-Type electronic rebound hammer manufactured by 

PROCEQ. UPV tests were conducted using the TICO concrete ultrasonic detector from PROCEQ Company in 

Zurich, Switzerland, in accordance with the protocols described in the research by Tharmaratnam and Tan [20] 

and the ASTMC59716 standard. For every test site, four UPV measurements were taken.Core samples were 

taken from the same sites after the RH and UPV testing. To ensure uniformity, one person performed the RH 

and UPV measurements, whereas a different, more skilled person took the core samples. The models of 

artificial intelligence (AI) were developed and tested using the collected data. Destructive tests were carried 

out in compliance with the Taiwan National CNS1232 standard, especially the "Compressive Strength of 

Concrete Specimens," in order to ascertain the concrete samples' true compressive strength. For testing, the 

HT-8391 compressing machine—which can apply pressure of up to 200 tons on the surface of a concrete 

sample—was utilized. The upper surface of the concrete beams was cleaned with a moist tissue before testing. 

 

4.3. Prediction Model Development 

4.3.1. Artificial Neural Networks 

In this study, Neuro Solutions 7.0 software coupled with Excel was used to build the artificial neural networks 

(ANNs) model for forecasting concrete compressive strength. For the prediction procedure, a back-propagation 

network (BPN) was used, and data from 98 samples—all taken from non-structural beams in a big residential 

building's basement—were used. Of these samples, 28 were used as the testing dataset for model validation, 

while 70 were chosen at random to serve as the training dataset. The average ultrasonic pulse velocity and 

average rebound number from in-situ trials served as the model's input variables, while the model's output was 

the compressive strength of concrete. 

After loading the training data to train the ANNs model, the model training procedure identified the optimal 

prediction model. The actual concrete compressive strength discovered through destructive testing on core 

samples was then contrasted with the prediction findings. Metrics including root mean square error (RMSE), 

mean absolute error (MAE), mean forecast error (MFE), error to signal ratio (ESR), and mean absolute 

percentage error (MAPE) were used to assess the accuracy of the predictions. 

Numerous modes with varying configurations were investigated in order to optimize the ANNs model. The 

majority of non-linear regression problems may be solved with one or two hidden layers, according to prior 

research; both configurations were examined in this work. The parameters used for the ANNs models created 

in this study are compiled in Table 1. 

 

Table 1. Network model parameter settings. 

Network Parameters of the Project Explanation 

Internet usage examples model Back-propagation neural network 

Sample selection (Exemplars) Total Data 100 

Training Data 75 

Testing Data 32 

The number (Hidden Layers) One Layer and Two Layer 

Transfer Tanh Axon 

Learning Rule Levenberg Marqua 

Maximum Epochs The default value is 200, and gradually increased 

Termination 
1. The minimum tolerable range (MSE) 

2. The maximum training period (Epochs) 

Cumulative weights update method Batch 
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4.3.2. Support Vector Machine setting 

In this work, the support vector machine (SVM) prediction model was created using MATLAB's LS-SVM 

tool. Metrics including root mean square error (RMSE), mean absolute error (MAE), mean forecast error 

(MFE), error to signal ratio (ESR), and mean absolute percentage error (MAPE) were used to evaluate the 

performance of SVM models, much like ANN models. For the SVM model, the literature-recommended 

Gaussian Radial Basis Function (RBF) kernel was used. 

To create the prediction model for the RBF kernel SVMs, two parameters, σ and γ, had to be found. Similar to 

how the ANNs model was developed, the training dataset consisted of 70 randomly chosen samples out of 98, 

while the testing dataset consisted of the remaining 28 examples. Concrete compressive strength was the 

model's output, and the average rebound number and average ultrasonic pulse velocity from in-situ studies 

served as its input variables. A bigger number in RBF kernel SVMs suggests stronger smoothing. σ measures 

how smooth the decision surface is. The regularization parameter, gamma, affects how complicated the model 

is and how well the training data points are fitted. Because σ and γ values vary depending on the task, it was 

necessary to select them via trial and error. Using RMSE, MAE, MFE, ESR, and MAPE, the SVM prediction 

models' performance was assessed. 

 

4.3.3.  Setting for an Adaptive Neural Fuzzy Inference System 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) models used in this study's training and testing of 

prediction models were created using MATLAB. The neuron-based fuzzy inference system was trained using 

seventy of the ninety-eight experimental data points; the other twenty-eight samples were used for testing. 

Concrete compressive strengths were predicted using the ANFIS models, and the results were compared to the 

actual compressive values found by destructive testing. To measure prediction accuracy, evaluation measures 

such as RMSE, MAE, MFE, ESR, and MAPE were used. 

Excel files were used to import training and testing data for the ANFIS model building process. The MATLAB 

program "anfisedit" was utilized to develop the ANFIS prediction model. It examined eight distinct kinds of 

fuzzy membership functions and changed the quantity of input membership functions from two to five. The 

type of output membership function was set to constant, and a hybrid FIS training approach was used. 

Convergence conditions were first established with a learning period of 10 and a default value of 5000 times, 

progressively increasing, in order to manage training time. A network error tolerance of 0.2 was set.  

Testing datasets were used to evaluate the model following the training phase. The "evalfis" function was used 

to export the prediction findings, which were then compared to the concrete's actual compressive strength. By 

using RMSE, MAE, MFE, ESR, and MAPE as metrics to assess how well the ANFIS models predicted the 

compressive strength of concrete, assessment consistency was preserved. 

 

5. Prediction Results 

 

5.1.  Implications for Research 

The average and standard deviation of in-situ non-destructive testing (NDT) data were computed during the 

creation and validation of prediction models. Ten measurements were made at each test location for the 

Rebound Hammer (RH) test, and four measurements were made at each location for the Ultrasonic Pulse 

Velocity (UPV) test. The corresponding formulae were used to get the average and standard deviation. Of the 

98 test samples that were gathered, 70 were selected at random to serve as the training dataset and the remaining 

28 as the testing dataset. Core samples were taken at each place and subjected to destructive testing in the 

laboratory to ascertain the true compressive strength of the concrete. Metrics including root mean square error 

(RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), mean forecast error (MFE), 

and error to signal ratio (ESR) were used to evaluate the quality of the model prediction. Three different 

artificial intelligence (AI)-based prediction models were used in the study: an adaptive neural fuzzy inference 

system (c), a support vector machine (b), and an artificial neural network (a). Concrete compressive strength 

was chosen as the output variable in these models, which used RH and UPV test results as input factors. The 

best model and parameter configurations were investigated in order to identify the best setting for each AI 

technique. The testing dataset was then used to validate the training models. 

5.2. ANNs Model Prediction Results 

The ultrasonic pulse velocity and the rebound number were the two input variables for the ANNs model. The 

compressive strength of the concrete served as the output variable. 

• First input: the mean of ten RH readings 

• Second input: the mean of the four UPV readings 
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• Concrete's compressive strength is the result. 

 

The ANNs employed a multilayer perceptron, a generalized regression network, a radial basic function network 

(RBFN) trained using Bayesian regularization, and linear regression as their functions. 

5.3.  ANFIS Model Forecasted Outcomes 

Users can select various membership function kinds and numbers throughout the ANFIS model construction 

process in the MATLAB environment. In order to investigate the prediction performance of various model 

configurations, ANFIS models with two, three, four, and five membership functions were developed for this 

study. Meanwhile, the ANFIS models were also used to investigate eight distinct categories of attribution 

functions: trimf, trapmf, gbellmf, gaussmf, gauss2mf, pimf, dsigmf, and psigmf. A total of 32 distinct ANFIS 

models (eight types of attribute function x four types of function number) were created for this study. The 

models using the trapezoid membership function (tramf) and the triangular membership function (trimf) among 

the 32 ANFIS models had the best training outcomes.   

 

6. Conclusions 

 

To enhance the accuracy of in-situ non-destructive concrete compressive strength tests, artificial intelligence 

(AI) methods were employed to analyze experimental data from rebound hammer and ultrasonic pulse velocity 

tests. The study utilized three AI techniques, namely artificial neural networks (ANNs), support vector 

machines (SVMs), and adaptive neural fuzzy inference system (ANFIS), to develop prediction models. 

Experimental data from 98 samples in a residential complex were collected, with both rebound hammer (RH) 

and ultrasonic pulse velocity (UPV) tests conducted. Core samples were extracted to determine the actual 

concrete compressive strength. Of the 98 samples, 70 were randomly chosen as training data, and the remaining 

28 were designated as testing data for model evaluation. Different model setups were explored during the 

development process, utilizing the average rebound hammer number and average ultrasonic pulse velocity as 

input variables and concrete compressive strength as the output. The training models were identified, and their 

performance was validated using the testing data. 

Traditional concrete compressive strength estimations often exhibit a mean absolute percentage error (MAPE) 

exceeding 20% compared to actual strengths obtained through destructive tests. Most previous research relied 

on laboratory samples rather than those from actual structures. In this study, in-situ non-destructive tests were 

conducted, and core samples were taken for accurate strength identification. Applying AI techniques to data 

analysis yielded satisfactory results, with MAPEs of 14.69%, 10.23%, and 10.01% for ANNs, SVMs, and 

ANFIS prediction models, respectively. This represents a significant improvement over prior research 

outcomes. The study's findings offer valuable insights for researchers and industry practitioners assessing in-

situ concrete compressive strength using non-destructive testing methods. 
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