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ABSTRACT 

Context. The Indo–Pacific eel (Anguilla marmorata) is a widely distributed and 

commercially valuable species across ecological regions worldwide. Overfishing 

and habitat loss are leaving the Indo–Pacific eel in a risky situation and raising a 

high demand for conservation. Previous research has found relationships between 

the Indo–Pacific eel’s migration patterns and environmental factors. However, 

there is still a need to advance the discovery of its spatial distribution by using 

diverse environmental and ecological datasets and modelling its growth in terms 

of different environmental characterizations.  

Aims & Methods. Here, we compared machine learning (ML) CatBoost (CB) 

and the multivariate linear model to investigate the relationship between spatial 

distribution, Indo–Pacific eel development stages, and environmental factors in 

central Vietnam.  

Key results. Our results show that CB detected the Indo–Pacific eel at high 

accuracy (Overall Accuracy (OA) = 0.9, F1 = 0.88, AUC = 0.97) and estimated 

the total length at different confidence levels (R2 ranging from 0.51 to 0.70), 

demonstrating superior performance to the multivariate linear model. 

Conclusions & implications. This study highlights the potential use of ML 

models in species distribution mapping and modelling growth patterns to support 

conservation efforts of Indo–Pacific eels in their natural habitats. 

 

Keywords: Indo–Pacific eel, ecology, environment, growth stage, CatBoost, 

Machine learning 

 

1. INTRODUCTION 

 

Indo–Pacific eel (Anguilla marmorata Quoy & Gaimard, 1824) is the most widespread species across the 

Indian Ocean, the Indo–Pacific to French Polynesia in the South Pacific Ocean (Ege, 1939; Tsukamoto et al., 

2020) with significant ecological, commercial, and cultural values (Itakura et al., 2020a; Kieu et al., 2020). A. 

marmorata has been in high demand in the fisheries/ aquaculture sectors, particularly in East Asia, as a 

replacement for temperate eels (Pike et al., 2019). As a result, Anguilla marmorata populations have been in 

over-exploitation with an observed decline trend, possibly threatening them in the wild. 
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A. marmorata is found in climatic regions with habits of migration and diverse living environments in different 

growing stages (Itakura et al., 2020a; Itakura and Wakiya, 2020; Arai and Chino, 2019; Aquino et al., 2021; 

Kamai et al., 2020; 2021). Accurate documentation of the eel distribution in their natural habitats across diverse 

environmental conditions is essential to enhance the protection and conservation of A. marmorata in the 

context of climate change (Itakura and Wakiya, 2020). Despite this, the literature revealed comprehensive data 

on eel distribution and associated environmental parameters globally, especially in Vietnam (Solomon and 

Ahmed, 2016; Meulenbroek et al., 2020; Neog and Konwar, 2023), where A. marmorata species is prevalent 

in various water bodies, but adequate datasets on its habitats are lacking. In addition, we discovered an 

unbalanced number of research works that have leveraged available ecological and environmental datasets to 

delineate fish habitats and growth patterns (Roberts et al., 2022; Pickens et al., 2021; Waldock et al., 2022; 

Sophie et al., 2022; Schickele et al., 2019; Effrosynidis et al., 2020; Chandran et al., 2023; Yin et al., 2022), 

while there are fewer records of similar works for eels (Itakura et al., 2020b; Matushige et al., 2022). Although 

various case studies have mapped the presence of different fish species in natural habitats, none have attempted 

to predict the presence of eels from environmental and ecological data. The estimation of fish growth (i.e., 

body length and weight) has been implemented in–house farms with success (Saberioon and Císař, 2018; 

Tengtrairat et al., 2022; Lopez–Tejeida et al., 2023). This approach, nevertheless, requires direct measurement 

of the fish body or indirect measurement from the camera, which is not practical in natural habitats. 

Environmental and ecological datasets have different levels of relationship with the spatial distribution and 

growth stages of eels (Clavero and Hermoso, 2015; Glova et al., 1998; Cairns et al., 2022; Itakuringa et al., 

2020b), which are potential to provide an essential dataset for successful modelling of living habitat and growth 

in their living environment. Unfortunately, there is likely a lack of research to develop a novel approach to 

estimate eel’s growth and spatial distribution in such conditions.  

The recent situation highlights the demand for updating species distribution databases and developing 

advanced methods to predict species distribution in the complex context of climate change. The entire field-

based mapping of eel distribution is costly and time–consuming, making successful modelling of fish presence, 

which only uses a small amount of environmental and ecological data, a promising approach for future 

automated mapping of fish distribution. Using these databases makes it reasonable to implement functional 

zoning to promote sustainable eel exploitation and conservation (Pike et al., 2019).  

Over the past decade, there has been a significant rise in the use of artificial intelligence (AI) and machine 

learning (ML) in the domains of object classification and modelling (Sandhya Devi et al., 2021; Tao et al., 

2023). ML, as a non–parametric and non–linear learning model, has outperformed the parametric method in 

detecting objects and modelling biophysical parameters (Ha et al., 2021a; b; Ha et al., 2023; Ha et al., 2020; 

Pham et al., 2023), offering a more efficient and rational approach to fish detection, growth modelling and 

spatial distribution (Syed and Weber, 2018; Gladju et al., 2022). 

One such efficient ML algorithm is CatBoost (CB) in the boosting family, which works well with classification 

and regression tasks using numerical or categorical data (Prokhorenkova et al., 2018). Several studies have 

applied CB for a wide range of research topics, including the mapping of ecosystem distribution and various 

biophysical parameter estimations, with a high degree of success (Fan et al., 2018, Fan et al., 2018, Ha et al., 

2023; Ha et al., 2021b; Pham et al., 2023; Pham et al., 2021). Compared to the popular bagging (i.e., Random 

Forest) and other boosting (i.e., Extreme Gradient Boost, Light Gradient Boosting Machine) methods, CB 

returns reliable performance with fewer hyperparameters, which is claimed as the advantage of the ordered 

boosting tree approach and the L2 parameter regularization parameter (Prokhorenkova et al., 2018). The novel 

decision tree approaches introduced in CB help reduce overestimation, and improve prediction accuracy for 

any given dataset (Fan et al., 2018; Kim et al., 2023). 

In this study, we validate the performance of CB machine learning in (1) evaluating the relationship between 

environmental and ecological factors and the distribution of Indo–Pacific eels (A. marmorata) in central 

Vietnam and (2) comparison with a multivariate linear model to estimate the growth of Indo–Pacific eel (A. 

marmorata) in length across different stages of development. Our results aim to diversify methods and improve 

the precision in tracking and modeling the growth of Indo–Pacific eels in varying environments, providing the 

most recent dataset on their habitats and proposing further solutions for their conservation. 

 

2. STUDY SITE AND METHODOLOGY 

 

2.1. STUDY SITE 

Thua Thien Hue is located in the southern part of North Central Vietnam, covering a natural area of 

approximately 505,000 ha with a complex topography that includes diverse habitats such as rivers, estuaries, 
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valleys, and mountains. The river and estuary complex networks consist of the main rivers of O Lau, Huong, 

Truoi, Bu Lu, Lang Co lagoon, and Tam Giang – Cau Hai, which is the largest lagoon in Southeast Asia with 

an area of 22,000 ha (Fig. 1). The three estuaries Thuan An (Tam Giang lagoon), Tu Hien (Cau Hai lagoon), 

Lang Co (Lang Co lagoon) provide routes for water exchange and create unique brackishwater in the lagoon. 

 

Fig. 1. Study site in Thua Thien Hue province, Vietnam, with sampling stations 

 

In Thua Thien Hue, Vietnam, glass eels move into the lagoon through these estuaries before completing life 

circles in upstream rivers (Kieu et al., 2020; 2022b). Indo–Pacific eels have been found in all water bodies 

during the year (January – December), including phase 1 (120 – 228 mm in length – juveniles), phase 2 (187 

– 410 mm – fingerling), phase 3 (387 – 1137 mm – pre–adulthood), and phase 4 (410 – 1137 mm in length – 

adulthood) (Kieu et al., 2022a;b). 

This study identified seven (7) routes, including streams, rivers, and estuaries, where Indo–Pacific eels were 

present at high density and in different hydrological and ecological regions in Thua Thien Hue province, 

Vietnam (Table 1 and Fig. 1). Staff at the Faculty of Fisheries, Hue University, collected spatial distribution 

of eels and environmental and ecological parameters every month from 11/2018 to 11/2019. 

 

Table 1. Number of study sites in Thua Thien Hue province, Vietnam 

No. Research routes Acronym 
Number of observations with 

eels 

Number of observations 

without eels 

1 O Lau river system OL 34 44 

2 Huong river system SHU 105 0 

3 Truoi river system STR 49 153 

4 Bu Lu river system SBL 57 17 

5 Lang Co lagoon LC 45 23 

6 Thuan An estuary TA 30 0 

7 Tu Hien estuary TH 30 0 

Total 350 240 

 

2.2. ENVIRONMENTAL/ ECOLOGICAL PARAMETERS SAMPLING 

Twelve (12) parameters were considered as the dataset for eel detection and estimation of growth length at 

different stages (Table 2). 



   Journal Of Advance Zoology 

 

Available online at: https://jazindia.com    245 

Table 2. Environmental/ ecological parameters used in this study 
 Parameter Acronym Unit Data type Code 

1 Temperature To ℃ Numerical data  

2 Salinity S‰ Part per thousand (ppt) Numerical data  

3 pH   Numerical data  

4 Dissolved oxygen DO mg L-1 Numerical data  

5 Water depth  m Numerical data  

6 Bottom type   Category data Moss, flat (1), sandy (2), Stone 

with caves (3) 

7 Tidal regime Tide  Category data With tide impact (1), without 

tide impact (2) 

8 Moon phase Moon  Category data Moonlight (1), no moonlight 

(2) 

9 Month   Numerical data  

10 Season   Category data Winter (1), early spring (2) 

11 Water color   Category data Clear water with no color (1), 

turbid water with a change from 

non-color to alluvial water (2) 

12 Digital elevation model DEM m Numerical data  

 

Water samples were taken to measure temperature (℃), salinity (S‰), pH, dissolved oxygen (DO, mg L-1) 

using the electronic thermometer, ATAGO Master S/ refractometer. MillM, Extech DO600, and Hanna 

HI98017, respectively. Water depth (m) was measured using a Hondex 7-depth gauge. The bottom type was 

collected and identified at the field site whilst tidal regime, moon phase, month, and season day were 

determined using meteorological and hydrological data (TTH–PSO, 2020). Eye visualization was used to 

identify the water color in clear or turbid water. The positions of the sampling station were recorded using a 

hand-held GPS Garmin 78S at the accuracy of +/- 2 m. The eel's total length (TL) was measured using a vernier 

scale with an accuracy of 1 mm. The developmental stages associated with migration were identified according 

to the description of Kieu et al. (2022a) based on morphological characteristics. Elevation data was extracted 

from the digital elevation model (DEM) image and sampling points in the SAGA GIS application. The DEM 

data was downloaded from the website https://www.eorc.jaxa.jp /ALOS/en/dataset/a w3d30/aw3d30_e.htm 

and was projected to the WGS–84 UTM 48N. 

 

2.3. MACHINE LEARNING MODEL CONFIGURATION 

2.3.1. CATBOOST MODEL 

The CatBoost (CB) was released in 2018 as a boosting ML algorithm designed to work with numerical and 

category datasets (Prokhorenkova et al., 2019). Alongside the bagging ML Random Forest (RF) and the 

boosting ML Extreme Gradient Boost (XGB), CB has been successfully adapted to different classification and 

regression domains worldwide (Ha et al., 2021a,b; Ha et al., 2020). CB inherits the sequential learning of 

boosting algorithms, alleviating overfitting and improving prediction accuracy. CB has fewer hyperparameters, 

which are 3 (depth, iteration, learning rate) compared to 6 (bootstrap, maximum depth, maximum features, 

minimum samples leaf, minimum samples split, number of estimators) of RF and 7 (booster, gamma, learning 

rate, maximum depth, minimum child weight, number of estimators, subsample) of XGB, making CB cheaper 

to optimize and lighter in model implementation. CB uses similar binary decision trees, however, in different 

structures and so-called symmetric trees, proving an efficient computation and reducing prediction time. A 

decision tree in CB has a form as follows (Prokhorenkova et al., 2019): 

h(x) = ∑ bj{x ∈ Rj}
J
j=1          (1) 

In addition, CB introduced ordered boosting, which is a permutation-based implementation to train and 

evaluate the residuals in different datasets. This boosting mechanism prevents the data from leaking during the 

training and validation of the model, which has been a weakness of the classical boosting algorithm. In this 

study, CB is optimized and performed in the Python environment using the scikit–learn Python library 

(Pedregosa et al., 2011). 

2.3.2. Model configuration and implementation 

 

Data normalization. The input data of environmental and ecological parameters were normalized to the ranges 

from 0 to 1 using the scikit–learn library (Pedregosa et al., 2011). The normalized data, including twelve (12) 

parameters of the month, season, temperature, S‰, DO, pH, water color, depth, bottom type, moon, tide, and 

DEM were used as the input data for the CB model during the prediction of spatial distribution and growth 

length modelling. 

https://www.eorc.jaxa.jp/
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Model hyperparameter optimization. CB hyper–parameters are optimized using GridSearchCV with five–

fold cross–validation in the scikit–learn library (Pedregosa et al., 2011) (Table 3). During optimization in the 

searching space, the GridSearchCV tests potential combinations from a defined range of hyperparameters. The 

best hyperparameters were returned with the highest classification accuracy for the binary mapping of eel fish 

distribution and the lowest root means square error (RMSE) for modelling eel growth length. 

 

Table 3. CatBoost model hyperparameter optimization for eel fish distribution prediction and growth length 

modelling 
Prediction of spatial distribution 

 Depth Iteration Learning rate Loss function 

 3 10 0.001 Log loss 

Modelling of total length 

 Depth Iteration Learning rate L2 leaf regression 

Phase 1 6 120 0.05 8 

Phase 2 2 80 0.13 4 

Phase 3 5 100 0.2 9 

Phase 4 2 150 0.15 3 

 

Model implementation. In this study, 590 and 334 observation points were used for the binary mapping of 

the eel fish distribution (presence/ absence) and modelling the body length at four phases of eel growth. The 

observation data was divided into 40 % for model training and 60 % for model testing to predict the spatial 

distribution, whilst a ratio of 70 % for model training and 30 % for model testing was applied to predict the 

growth length (Table 4). CB model was implemented and compared to the multivariate linear model using the 

scikit–learn library in the Python environment. The model performance was evaluated with standard metrics. 

The original contribution of the input factors to the CB model was measured from the function of feature 

importance – a built–in feature of the CB model. 

 

Table 4. The number of observations used for spatial distribution prediction and the growth length modeling 

of the eel fish 

Indications 
No. of observation for 

model training 

No. of observation for 

model testing 

Total of 

observation 

Spatial distribution prediction 236 354 590 

Growth length modelling at phase 1 42 19 61 

Growth length modelling at phase 2 72 32 104 

Growth length modelling at phase 3 83 36 119 

Growth length modelling at phase 4 35 15 50 

 

Model evaluation. We applied various standard metrics to evaluate CB performance. For the presence/ 

absence binary mapping, the model skill was measured using the overall accuracy (OA), Kappa coefficient 

(κ), precision (P), recall (R), F1 and the Precision-Recall curve with Area Under Curve (AUC) scores, whilst 

the metrics of coefficient of determination (R2) and root mean squared error (RMSE) were used to quantify 

the quality of the CB model for growth length modelling. Equations (2) – (8) present the formulas of given 

metrics. 

OA(y, ŷ) =
1

nsamples
∑ (ŷi = yi)
nsamples−1

i=0
       (2) 

in which:  

ŷi: predictedvalue; yi: correspondingtruevalue 

nsamples: the total number of validation samples 

κ =
po−pe

1−pe
           (3) 

in which: 

po: the observed agreement; pe: the expected agreement 

P =
(TP)

(TP)+(FN)
           (4) 

R =
(TP)

(TP)+(FN)
           (5) 

F1 = 2 ×
P×R

P+R
           (6) 

in which: TP: true positive; FP: false positive; FN: false negative 

R2(y, ŷ) = 1 −
∑ (yi−ŷi)

2n
i=1

∑ (yi−y)
2n

i=1

         (7) 
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in which: ∑ (yi − ŷi)
2n

i=1 = ∑ ϵi
2n

i=1 ; ϵ: the error term; n: the total number of validation samples 

RMSE(y, ŷ) = √
1

nsamples
∑ (yy − ŷi)

2nsamples−1

i=1
      (8) 

in which: ŷi: predictedvalue; yi: correspondingtruevalue 

nsamples: the total number of validation samples 

 

3. RESULTS 

 

3.1. ENVIRONMENTAL/ ECOLOGICAL PARAMETER VARIATION 

We found a variation of environmental parameters in different ecological distributions of Indo–Pacific eel (Fig. 

2), in which temperature ranged between 21℃ and 32 ℃, pH varied from 6.5 to 8.6, DO changed between 6.5 

and 9.5 mg L-1, salinity and depth had wide ranges of 0 ‰ - 15 ‰ and 0.3 – 11 m, respectively. The eel 

distribution was recorded at water bodies with rocky, sandy, and stone with cave bottoms (72.8 %). In addition, 

the data in Fig 2. indicated a higher frequency of the Indo–Pacific eel presence with disturbances of flow, water 

color changes, tidal regimes, moon cycles, and floods, which was assumed as related to the migratory habits 

in winter, and early spring.  

 

 
Fig. 2. Environmental/ ecological variation in study site 
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Correlation analysis. We examined the relationship between the total length and environmental/ ecological 

factors (Table 5). Accordingly, higher correlation coefficients were observed for the parameters of the month 

(r = 0.3), season (r = -0.29), water color (r = 0.36), and moon (r = -0.26), whilst lower values of the coefficient 

were obtained for S‰, DO, depth, bottom type, and tide (r ranged between -0.15 to 0.19). Temperature, pH, 

and DEM parameters had the lowest correlation to the total length (r varied between -0.03 to 0.09). 

 

Table 5. Pearson correlation coefficient (r) between the total length and environmental/ ecological parameters 

 

Total 

length 

Month Season To S‰ DO pH Water 

color 

Depth Bottom 

type 

Moon Tide DEM 

Total length 
1.00 0.30 -0.29 0.09 -0.11 0.10 -0.03 0.36 0.19 -0.16 -0.26 -0.15 0.07 

 

3.2. EEL DISTRIBUTION DETECTION USING THE CATBOOST MODEL 

For the given dataset, the CB model accurately predicts the distribution of eels (Table 6) with high accuracy 

(0.90) and confidence (κ = 0.80). Locations with eel can be detected with very high precision (0.96) and a bit 

lower recall score (0.82). Overall, the model performs well, with a high F1 score for both locations with (F1 = 

0.88) and without the eel (F1 = 0.93). 

 

Tabel 6. Model performance of Indo–Pacific eel distribution prediction 

OA 0.90 κ 0.80 

 P R F1 

With eel 0.96 0.82 0.88 

Without eel 0.88 0.98 0.93 

 

As an imbalance exists between the number of “with eel” and “without eel” observations, the precision – recall 

curve was adapted to provide additional validation of the CB model (Fig. 3). A high number of area under the 

curve (AUC) of 0.974 indicated a consistent and reliable performance of the CB to detect the presence of eel 

in different environmental and ecological conditions. 

 

 
Fig. 3. Precision — recall curve of the CB model in prediction of presence/ absence of eel 

 

In addition, we observe the differences in the contribution of input environmental and ecological parameters 

to the model performance (Fig. 4). Of the given dataset, the DO contributes approximately 68 % to the success 

of the prediction, followed by the bottom type (6.57 %), temperature (5.56 %), water color (5.23 %), elevation 

(4.03 %), and the season factor (3.66 %). The tide regime and moon cycle only support a very small proportion 

of 0.16 % and 0.53 %, respectively, whilst the factors of sampling month and salinity have no impact on the 

finding of places with the Indo–Pacific eel in this study. 
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Fig. 4. The contribution of environmental and ecological parameters to the CB performance 

 

3.3. MODELING THE GROWTH LENGTH OF EEL FISH USING THE CATBOOST MODEL 

Our results indicate an outperformance of the CB over the multivariate linear model for all the phases (1 – 4) 

(Table 7). The linear model presents the best performance in phase 1 (R2 = 0.46), but it has an overestimation 

since the R2 is only 0.29 in the training phase. In contrast, the CB model is more stable, with R2 ranging from 

0.51 to 0.70 and low RMSE values compared to the samples' mean values in the testing phases (Table 7). In 

phase 3 and 4, when the linear model fails to model the growth length, the CB still performs well with 

acceptable R2 values of 0.51 (phase 3) and 0.70 (phase 4). 

 

Table 7. CatBoost and multivariate linear model performance for phase 1 — phase 4 

Phase 
CatBoost Multi-variate linear Mean value of test samples 

(mm) R2 train R2 test RMSE (mm) R2 train R2 test 

Phase 1 0.74 0.60 16.86 0.29 0.46 180.76 

Phase 2 0.54 0.57 35.65 0.31 0.40 329.96 

Phase 3 0.79 0.51 99.30 0.22 -0.88 569.87 

Phase 4 0.85 0.70 113.49 0.37 0.10 711.67 

 

We also observe the optimal ranges of predicted growth lengths for each of the growth phases (Fig. 5 (a), (b), 

(c), (d)). For growth phase 1 and phase 2, the CB predicts well for the lengths between 150 – 200 mm and 260 

– 360 mm, whilst wider ranges of growth lengths are predictable at higher growth phases (400 – 900 mm for 

phase 3 and 600 – 1100 mm for phase 4). 
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(a) 

 
(b) 

(c)  

 

 

 

 

(d)  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Model performance (a – d) and feature importance (e – h) of input environmental and ecological 

parameters for the modelling of growth length phase 1 – phase 4 
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At the early growth stage, the moon cycle (9.6 %) and the sampling month (19 %) are the most critical factors, 

whilst additional factors of elevation (13.3 %), bottom type (13.2 %), DO (16.1 %), and the sampling month 

(14.4 %) contribute the most impact in phase 2 (Fig. 5 (e), (f), (g), (h)). The subsequent growth phases seem 

to be influenced by different factors of both environmental and ecological groups. In phase 3, the sampling 

month (22.2 %) still has a substantial impact on the modelling of growth length, together with other factors of 

water depth (12.4 %), pH (12.2 %), and sampling season (11.6 %). A more significant number of influential 

factors contribute more to the growth phase modelling in phase 4 with additional contributions of water color 

(22.1 %), water depth (17.6 %), bottom type (11.1 %), sampling month (12.8 %), and temperature (10.7 %). 

 

4. DISCUSSION 

 

The spatial distribution of Indo–Pacific eel varies greatly depending on environmental and ecological 

conditions and development stages, as evidenced by previous studies (Hagihara et al., 2012; Kieu et al., 2022b). 

Both endogenous (circadian clock) and exogenous (tidal direction) rhythms have been observed to be related 

to different environmental and ecological conditions, such as ocean currents (Han et al., 2012; Aoyama et al., 

2018); tidal regime (Arai et al., 2020a); specific habitats (freshwater tidal limits, water body structure, depth, 

velocity, sediment, aquatic vegetation) (Itakura and Wakiya, 2020; Kume et al., 2019). 

In this study, we first report using the ML model (CB) and environmental and ecological dataset to detect the 

presence and model the total length of Indo–Pacific eel in a wide range of topography, ranging from estuaries 

to mountainous areas. We proposed a machine learning–based method to spatially predict the distribution of 

Indo–Pacific eel in a broad ecological range (i.e., estuary, lagoon, freshwater rivers, streams) and then to model 

the fish body length at different growth phases (1 – 4). Detection Indo–Pacific eel distribution in different 

ecosystems shows the influence of environmental factors such as DO (68 %), bottom type (6.57 %), 

temperature (5.56 %), watercolor (5.23 %), elevation (4.03 %), season factors (3.66 %), however tidal regime 

(0.16 %) and moon phase (0.53 %) had less impact on the occurrence of Indo–Pacific eel (Table 6 and Fig. 5). 

The CB was able to identify the places with Indo–Pacific eel with up to 96 % precision and 88 % F1 score, 

however, the recall metric was lower at 88 %, implying that the CB might overlook a few observation points 

and results in misclassification of the fish presence/ absence. Comparing our approach to similar works, we 

found that the CB model achieves higher accuracy than the results for Chanda mana (Raman et al., 2023). 

Our analysis also indicates the challenges for eel growth modelling, especially in growth phases 2 and 3. The 

CB was superior to the multivariate linear model in estimating the total length (R2 ranging 0.57 – 0.70) of 

Indo–Pacific eel using a variety of environmental and ecological variables at all the phases. Specifically, the 

CB is capable of estimating the growth length with confidence in phases 1 and 4 (R2 = 0.60 and 0.70, 

respectively, Table 6); however, the performance might need to be improved with the estimation in phases 2 

and 3 (R2 = 0.57 and 0.51, respectively, Table 6). We discovered other works using environmental parameters 

as explainable variables for modelling the relationship between the length and weight of the fish Mugil 

cephalus (linear model with sea surface temperature, DO, salinity, and nutrient parameters) (Chandran et al., 

2023) and the scallop Placopecten magellanicus (spatiotemporal model with temperature and depth 

parameters) (Yin et al., 2022). To our knowledge, no studies are implementing the state–of–the–art ML (CB 

model) to estimate the fish growth (length) from a wide range of environmental parameters, which indicates a 

novel contribution of our works to the field of fish ecology analysis. In addition, feature importance analysis 

revealed the complex living environment in different growth phases with a combined impact of environmental 

and ecological parameters on the growth length. The parameters of the moon, depth, season, and month had 

the most impact on phase 1 growth, the DEM, bottom type, water color, DO, and month had more outstanding 

contribution at phase 2, whilst fewer parameters of depth, pH, season, and month were attributed to phase 3 

and significant influences were recorded for the parameters of bottom type, depth, water color, temperature, 

month in phase 4. The unclear biological development of fish individuals between phases 2 and 3 might create 

an overlapping of growth in phases together with the diverse living environment, explaining the 

underperformance of the model in these phases. 

This unavoidable limitation may be due to the diversity in the topography of the study site and the deficiency 

of high spatial resolution data on environmental and ecological variables. The number of Indo–Pacific eel 

samples is different from sampling areas for the phases, which might lead to an insufficient number of data 

points for the learning of the model and, therefore, potentially impact the accuracy of growth length modelling 

at the study site.  Ongoing research will focus on collecting higher spatial resolution data on environmental 

and ecological factors, increasing the number of sampling points in different areas, and implementing advanced 

feature selection methods such as Genetic Algorithms and Particle Swarm Optimization. The successful 
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application of the CB model for eel detection and growth estimation from a variety of environmental and 

ecological conditions holds promise for the development of automated mapping and modelling methods, which 

reduces time and cost in field surveys. These mapping databases serve as the basis for implementing functional 

zoning towards sustainable fishing and the conservation of eel species. 

 

5. CONCLUSION 

 

The Alguilla species has important economic, cultural, and ecological values. However, the community has 

been overfished globally, leading to significant degradation of its habitat and the number of eel individuals. 

Here, we propose an advanced method that utilizes the ML model (CB) to accurately detect the presence and 

quantify the growth total length of A. marmorata using environmental and ecological datasets across 

geographical ranges. 

The CB model, with optimized hyperparameters, archives high accuracy in spatial distribution detection of A. 

marmorata (OA = 0.9, F1 = 0.88, κ = 0.88) and a high value of the AUC (0.974). The parameters of DO, 

bottom type, DEM, water color, pH, To, and the season contributed the most information to detecting Indo–

Pacific eel in the study site. 

The total growth length of Indo–Pacific eel is estimated to have varying levels of success for different growth 

phases (R2 ranging from 0.51 to 0.70). The CB estimates the total length in phases 1 and 4 more accurately 

than in phases 2 and 3. The contribution of environmental and ecological parameters differed from the growth 

phases, which may be attributed to differences in living habitats. The superior performance of the CB over the 

linear model (R2 ranging from -0.88 to 0.46) suggests the potential application of machine learning models for 

various domains of fish ecology analysis and functional zoning–based conservation efforts in the future. 
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