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Abstract 

 
Imaging is important in today's healthcare since it is used at every stage of the 

clinical process, from diagnosis and treatment planning to surgery and follow-up 

investigations. Large data volumes provide issues for medical image processing 

because most imaging modalities have gone completely digital with ever- 

increasing resolution. This work, address difficulties in the range of Kilo- to 

Terabytes related to bioimaging, virtual reality in medical visualisations, 

bioimage management, and neuroimaging. Algorithms for image processing and 

visualisation must be modified due to the growing volume of data. With the aid of 

graphical processing units, scalable algorithms and sophisticated parallelization 

strategies have been created. This publication provides a summary of them. 

Although these methods are managing the difficulty from Kilo to Terabyte, the 

Petabyte level is quickly approaching. Medical image processing is still an 

important area of study because of this. 

 
Keywords: Image processing, Scalable algorithms, large medical imaging, 

Visualization of medical. 

 

 

Introduction 

The term "data" is widely used to describe a wide range of applications across several fields, regardless of 

the format. The data may take the kind of text, images, audio files, or video clips, for example. Image data 

is the most widely used sort of data since it better represents the information. The majority of real-time 

applications, including remote sensing and healthcare, process and analyse data using visual data.
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The picture data are ideal for sensitive applications since they are efficient for acquiring, processing, and 

analysing. Medical pictures are widely used in the healthcare industry to provide improved analytics and 

diagnosis. Depending on the condition, several imaging methods can be used to provide medical images. 

Medical professionals examine the medical photos and make the necessary diagnosis. This work focuses 

on medical picture quality enhancement and Content-Based picture Retrieval (CBIR) systems. Medical 

image analysis is a broad research area. 

Since that medical images directly affect people's lives, improving their quality is extremely 

important. Basically, factors like noise, low contrast, lighting, and so on have an impact on the quality of 

photos. The primary problem with medical images is noise, which has a negative impact on any system 

used for analytical analysis of medical images. 

The effectiveness of the image analysis system is dependent on the quality of the medical image, which is 

of utmost importance. However, when the programme handles a large volume of image data, getting the 

required image becomes a major challenge. In light of these research concerns, this work uses a Soft 

Computing (SC) technique to address problems including improving the quality of medical images and 

retrieving images from a large image collection. 

[1] When it comes to automation and optimisation issues, the Soft Computing method is quite important. 

The need for enormous storage arises from the continuous increase in the use of image data. Finding the 

necessary data at the appropriate time is therefore crucial. [2] Applications built using the Soft Computing 

methodology raise the system's efficacy and quality. As previously said, picture quality enhancement and 

CBIR are two important concerns in the field of medical image processing that are taken into consideration 

in this research work. [3] The first problem is addressed in the research phase one, while CBIR for medical 

imaging is covered in the next two stages. 

A Medical Image Integrated Possessions Assisted Soft Computing Techniques (MIPSCT) for Optimised 

Image Fusion is presented in the first phase of this study. [4] The final phase of the research provides a soft 

computing strategy in digital image processing employing Artificial Neural Networks (ANN) and Genetic 

Algorithm Framework (GAF). [5] The mid-phase of the research suggests a soft computing assisted 

heuristic learning approach for the computation of data processing. 

[6] Standard performance metrics such the Absolute Mean Error (AME), Peak Signal-to-Noise Ratio 

(PSNR), accuracy, sensitivity, contrast ratio, matching rate, error rate, selectivity, and so forth are used to 

assess the performances of all the suggested approaches. [7] The suggested works perform well when the 

obtained outcomes are compared to the current methodologies. 

 
 

Examples of large medical imaging 

Medical image management and image data mining 

PACS is one area where there has been a "explosion" of data obtained. Most clinical modalities, including 

plain x-rays, CT scans, MRIs, and ultrasounds (US), as well as optical imaging methods like endoscopy 

and microscopy, have gone digital and are now providing copious volumes of imaging data into PACS 

systems. [8] The systems have to manage many TB annually, which is considered a logistical challenge. 

"Information logistics" is the term used in medical informatics to describe the process of getting the correct 

information to the right location at the right time. [9] In the field of information logistics, several 

benchmarks have already been accomplished. 
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However, when it comes to medical images, retrieval from PACS archives is still dependent on alpha- 

numerical annotations, which can include the patient's name, the date of acquisition, the diagnosis written 

in natural language, or some research meta-data. 

Recent research has also addressed CBIR-PACS integration. [10] CBIR-based techniques are still not 

available for use in normal radiology procedures today, nevertheless. Lack of (i) translational cooperation 

between biomedical and engineering experts, (ii) effective representation of medical content by low-level 

mathematical features, (iii) thorough system evaluation, and (iv) appropriate integration tools are potential 

barriers to the use of CBIR in medicine. 

An online graphical user interface (GUI) built from standardised IRMA input/output (I/O) templates. [11] 

The IRMA-based application supporting screening mammography is the largest in terms of data volume. It 

currently contains 10,517 high-resolution digital photographs with replicates in various sample sizes, all 

annotated using ground truth. [12] Up to 54 MB of uncompressed data can be obtained from a single 

macrography, depending on the imaging device vendor. The Kilo-to-Terabyte step already applies in this 

case.[13] Therefore, all performance-related concerns are still outstanding and unresolved. [14] A 

sophisticated case-based reasoning approach for medical diagnosis and treatment will be made possible by 

fusing visual information with natural language-based access to medical case records. [15] Thus, the next 

challenge in medical informatics is to interface image processing with computerised text interpretation. 

 
 

Bioimaging 

For example, a single (3D t)-dataset obtained using fluorescence microscopy can readily contain several 

gigabytes of raw data. [16] Merely capturing two of these datasets daily results in an approximate annual 

mean data amount of 1,001 to 1,500 GB, rendering the visual examination of this data unfeasible. Not only 

are these data logistically challenging to handle, but their sheer number necessitates automated analysis in 

place of eye inspections. [17] Since biomolecular systems are inherently dynamic, the main difficulty lies 

in quantitatively and consistently analysing motion. 

Fig. 1 Cytoskeletal filaments of a living cell superimposed with motion vectors 

 
As a result, many strategies for monitoring molecular or cellular structures have been created; early research 

in this regard dates back to the 1970s.



Journal of Advanced Zoology  

Available online at: https://jazindia.com    1555  

 
 

Approaches based on cross correlation and particle flow are presented to evaluate polymer transport and 

turnover in fluorescent speckle microscopy (FSM). Micro-tubule tracking methods include the use of 

hidden Markov model (HMM) and active contours, as well as speckle-based techniques. In order to track 

fluorescent structures, a global reduction technique using simulated annealing was devised in. A 

registration-based technique is devised to trace the continuous translocation of intermediate filaments 

towards the nucleus (Fig. 1). 

Cell motility is influenced by structures known as focal adhesions (FAs). FAs must be tracked and 

segmented in order to analyse their dynamics. It is common practise to phrase motion estimate as an ill- 

posed problem. The solution necessitates regularisation using a priori knowledge of the generally predicted 

features of the motion field in addition to measurements on the picture data. 

 
 

Virtual reality in the visualisation of medicine 

With its primary hypothesis being that better comprehension may be attained faster through the use of real- 

time, stereoscopic displays and direct user involvement, virtual reality (VR) technology has long been seen 

as a promising option for a more effective analysis of massive data. Part VII of Hansen and Johnson's 

Visualisation Handbook provides general overviews of VR-based visualisation. To enable an 

understandable trial-and-error investigation, interactive data handling is a fundamental idea of VR-based 

data analysis. The rich user interface that virtual reality (VR) technology offers, allowing us to mix 

interactive exploration and immersive feeling, is one of this approach's main advantages. 

Virtual reality (VR) has gained recognition as a useful tool for analysing simulated technical and physical 

processes, although attitudes in the medical community are not entirely clear. VR is still relatively new to 

the practical practise of medical imaging. Speaking with radiologists during interviews revealed that they 

have received thorough training in the extraction of three-dimensional (3D) information from two- 

dimensional (2D) slices of CT, MRI, and PET data. Additionally, pre-processing raw data is necessary for 

the VR presentation of medical pictures, adding a cost element to radiologists' everyday tasks. In contrast, 

things are very different when it comes to research-related activities. Scientists recognise that virtual reality 

(VR) can provide valuable insights into intricate and vast medical data. Additionally, VR-based 

visualisation has demonstrated its influence on interdisciplinary discussions between medical specialists 

and researchers from other domains. 

One example of active research in the medical profession that can benefit from VR-based visualisation and 

interaction tools is diffusion tensor imaging (DTI). The most sophisticated technique for evaluating white 

matter fibre routes in a living human brain is currently offered by DTI. In this way, measuring the brain's 

water diffusivity allows for an estimation of the fiber's path. Each voxel's effective diffusion tensor can be 

computed using the DTI data. The components of the diffusion tensor can be used to calculate the 

parameters such as mean diffusivity, principal diffusion direction, or anisotropy of the diffusion ellipsoid. 

Compared to deterministic tractography, the probabilistic method takes into consideration the degree of 

uncertainty in the predicted white matter fibre paths and makes it possible to depict the overall fibre 

architecture of the human brain more clearly. 

The domain scientists can directly analyse their findings in three dimensions interactive visualisation of 

probabilistic fibre tracts (Fig. 2). It is possible to significantly lessen the mental strain that was previously 

necessary for evaluating 2D slices or for filling in uncertainty information in static charts. In order to allow
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for a 3D representation of the fibre tract while still displaying its main orientation and the degree of 

uncertainty, distinct probability values are coded with different colours and transparency. It is possible to 

intuitively expose relevant regions of the probabilistic fibre pathways and correlate them with anatomical 

landmarks by employing specialised 3D visualisation and interaction techniques. This makes it possible to 

examine the anatomical features right next to fibre networks with greater accuracy. Domain experts have 

claimed that the visualisation provides far more valuable insight than typical visualisation methods since it 

combines anatomical information from a reference brain with overlaying fibre tracking results in 3D. 

Fig. 2 Interactive exploration of probabilistic tractography data in a CAVE virtual environment 

 

 
Immersion-based virtual reality technology has become more significant in the last few years. Simulators 

that are operated on today's high speed computers are getting more and more complex due to their ever- 

increasing performance. Since most modern simulations are based on erratic 3D processes, standard 

visualisation approaches are insufficient for analysing them. Because VR technology enables the interactive 

visualisation and exploratory study of complicated, time-variant computational fluid dynamic (CFD) data 

directly in 3D space, it holds the potential to streamline this analysis process. Virtual reality (VR) 

technology has been effectively used in the field of computational engineering research for nearly twenty 

years. Bryson et al.'s Virtual Windtunnel was among the earliest instances. 

One team is studying the aerodynamics of nasal respiration, while the other is studying artificial blood 

pump computational analysis. Researchers can identify and extract essential flow patterns from their 

datasets substantially more profitably by using VR for direct engagement with the data in 3D space (Fig. 

4) and the Virtual Windtunnel paradigm applied in a cave automated virtual environment (CAVE)-like 

setting (Fig. 3). 
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Fig. 3 The Virtual Windtunnel: Interactive exploration of the flow field inside a human nasal 

cavity by real-time particle tracing in 3D space 

 
 

 
Fig. 4 (Color online) Direct interaction with “virtual red blood cells”flowing through a simulated 

artificial blood pump allows an intuitive navigation in space and time. Here, the domain expert 

picks a particlein order to navigate to a specific point in time 

 
 

Neuroimaging 

1 320 histological cuts produce a fresh data collection of the human brain with a volume reaching to GB. 

Every incision is 100 µm thick and scanned using 3 569 2 700 pixel polarised light imaging (PLI). When 

32 or 8 bits per pixel are used, the total memory for all scanned photos is 47.4 GB or 11.9 GB. Reconstructed 

nerve fibre routes from PLI scans are stored in an additional large data set. Rebuilding nerve fibres using 

PLI is similar to DTI. On the other hand, PLI offers an exceptionally high resolution that is currently 

unattainable using in-vivo methods. Additionally, a microscope is used to scan the polarised histological 

slices, obtaining many TB of volume per data set. Analysis of the architecture of nerve fibres in the human 

brain is made possible by micron resolution, which satisfies nerve fibre resolution. 

data sets with two different 1D transfer functions 

With these massive volumes of data, interactive navigation and visualisation are difficult tasks to do. A 

specialised 3D navigator has been created to view particular brain regions in real-time alongside the 
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associated nerve fibre data. A multi-modal approach can be used to integrate PLI scans with interactive 

visualisation of nerve fibres. This is a combination of several volume data sets. In order to accomplish this 

goal, several data sets are simultaneously loaded into the memory of the graphics processing unit (GPU) or 

central processing unit (CPU), requiring memory space for each set. Using two distinct transfer functions, 

(figure 5) displays a multi-modal ray casting from two volume data sets (MTI and PET from a head) 

integrated in a single 3D representation. The brain's images are mixed with previously reconstructed neural 

fibres to create a three-dimensional vision. A three-dimensional representation of the reconstructed nerve 

fibres from 36 PLI scans of a small brain region measuring 27.39 × 22.72 × 3.20 mm3 is shown in (figure 

6) 

 

 
Fig. 5 (Color online) Multi-modal ray casting visualization of MRI (blue) and PET (ocher) 

 

 

 
 

Fig. 6 (Color online) 3D visualization of 20 816 reconstructed nerve fibers 

 

 
Software Strategies for Handling Massive Data 

The increasing volume of data necessitates the adjustment of image processing and visualisation methods. 

The artificial blood pump dataset, for instance, has 30 GB of data total since it has a 3.6 million cell 

tetrahedral grid for each of 200 time steps. Standard visualisations can easily manage such quantities of 
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data. But interactive, real-time post-processing and data rendering on immersive, high-resolution displays 

is a difficult undertaking that calls for the advancement of computer graphics, data management, and 

improved parallelization techniques. It is anticipated that future datasets in this subject would grow to TB 

scale. 

To shorten processing times and improve memory economy, parallel approaches must be used to create 

scalable algorithms. Bricking and decomposition were integrated with a hierarchical data structure in recent 

study. 

In this instance, interactive representation of massive volumes of data comprising billions of samples is 

examined. Various programming approaches are employed for data management: (i) decomposition 

methods to obtain a multi-resolution subset of the data, (ii) streaming methods to obtain the appropriate 

viewing data. Volume data is broken down into smaller bricks using decomposition procedures, which are 

then processed further. Using a streaming method, runtime viewing data is fetched asynchronously. The 

visualisation pipeline receives only this visible data, and it uses a GPU-based ray casting process to produce 

the desired 3D view. 

Aside from the logistical challenge, the biggest drawback of working with Giga- to Terabyte volume data 

is the runtime performance. The user is unable to wait for responses from the application. Therefore, in 

order to achieve a satisfactory real-time response, current research focuses on sophisticated parallelization 

approaches. Different hardware architectures, involving one or more computers, CPUs, and GPUs, are 

needed for these techniques. A number of programming languages have been created to facilitate these 

architectures: 

 
 

1. By moving the programme from the CPU to the GPU, a number of algorithms have increased in 

efficiency developments in GPU architecture. This indicates that 240 to 480 massively parallel 

processing cores on the graphic card are employed in place of four to eight parallel CPUs. The 

graphic card industry has created a number of languages to write algorithms that run on the GPU, 

such as: 

• The processing engine found in NVIDIA graphics processing units is called Computer 

Unified Device Architecture, or CUDA. A C-like programming language called C for CUDA 

was created specifically for NVIDIA graphics cards. 

• A framework called Open Computing Language (OpenCL) operates on heterogeneous 

platforms made up of CPUs, GPUs, and other processors. Task-based and data-based 

parallelism are used by OpenCL to enable parallel computation. The common language for 

general-purpose programming on any graphics device is called OpenCL. 

2. Parallel computing, often known as grid computing, is the process of running several nodes of a 

cluster of interconnected computers at the same time across a fast local area network (LAN). 

Special software interfaces, such as the message passing interface (MPI), control the 

communication between the processes. 
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Conclusion 

Comprehensive programming methodologies have been summarised and current research in medical image 

management and data mining, bioimaging, virtual reality in visualisation, and neuroimaging has been 

discussed. Scalable programmes must be created to handle giga- to terabytes of image data and various 

parallel hardware architectures. With the introduction of contemporary programming languages, such as C 

for CUDA, OpenCL, and Qt-Threaded, process threading on multiple CPUs and GPUs is now supported. 

The next stage, which will take us from Tera- to Petabyte, is almost here. Up to 100 TB of data are generated 

by high-throughput next-generation sequencing for a single study (30 repeats). Whole body MRI is 

becoming more and more common in translational medical research. Given an eight bit grey scale 

resolution, 256 256 pixel slices, and 8 mm slice thickness, a single scan will produce roughly 16 MB, and 

the cohort as a whole will be roughly 3 PB. In the future, managing Tera- to Petabytes of biomedical image 

data will be a logistical challenge for PACS, CBIR, and HIS. The development of real-time applications 

that are accepted by doctors will depend heavily on data compression, decomposition, and parallelization 

techniques. 
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CBIR - Content-Based picture Retrieval 
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