Seller - Buyer Supply Chain System For Deteriorating Products Involving Floor Space Constraint And Budget Constraint

M. K. Vediappan ${ }^{1 *}$, M. Haj Meeral ${ }^{\mathbf{2}}$, R. Kamali 3
${ }^{1}$ *Assistant Professor, Department of Mathematics, Vels Institute of Science, Technology \& Advanced Studies, Chennai-600117, Tamil Nadu, India. Email: mkvediappan@gmail.com.
${ }^{2}$ Assistant Professor, Department of Mathematics, The Quaide Milleth College for Men, Chennai - 600100, Tamil Nadu, India. Email: hajmeeralmubarak@yahoo.com
${ }^{3}$ Assistant Professor, Department of Mathematics, Vels Institute of Science, Technology \& Advanced Studies, Chennai-600117, Tamil Nadu, India. Email: kamali_1883@yahoo.co.in

*Corresponding author: M. K. Vediappan
*Assistant Professor, Department of Mathematics, Vels Institute of Science, Technology \& Advanced Studies, Chennai-600117, Tamil Nadu, India. Email: mkvediappan@gmail.com.

Article History	Abstract
Received:	
Revised:	
Accepted	

chain system for deteriorating products. The core objective of the review

is reducing the system cost while optimizing the order size and alsy

satisfying the constraints. For this, a Lagrangian multiplier procedur

was applied to tackle this sort of non-linear programming mathematica

model. This model is illustrated through a numerical example which is

easy to computational and took less time too. Further, sensitivity

analysis utilized to illustrate the behaviors of developed model.\end{array}\right\}\)| CC License |
| :--- |
| CC-BY-NC-SA 4.0 | | Keywords: Inventory, shortages, constraints, Order Quantity |
| :--- |
| Lagrangian multiplier algorithmic technique |

1. INTRODUCTION

It is essential to reduce as much as minimal of deterioration of inventory to optimize the profit and (or) reducing the cost. Notable deterioration may occur during storage period items such as food, drugs, pharmaceuticals, electronic components, chemicals etc., and this loss must be considered when construct the model. This is, therefore managing and a storaging inventory of such products becomes a significance criteria for inventory decision process.

Chiu et al. [2] studied a determinative the best run time for production design with scrap, patch up and unpredictable breakdowns. Jawla and Singh [3] developed multi-thing EPQ model for blemished things with numerous creation arrangements. Karmveer and Ajendra Sharma [4] thought of analysis style concerns for deteriorating things of inventory models. Khannan et al. [5] thought of creation demonstrating for damaged things with blemished assessment strategy, adjust and deals come. Rabbani and Aliabadi [7] cultivated a model with credit worth and selling subordinate interest under tolerable conceded portions and inadequacies. Muniappan et al. [6] created partner EOQ model with stock and items house limit objectives. Ravithammal et al. [8] made accomplice inventory model with stock level need. Vediappan et al. [10] centered on coordination stock model by Lagrange multiplier factor strategy. Uthayakumar and Kumar [9] created inventory model for multi-thing beneath combination of distributions. Cardenas barron et al. [1]
inspected sinking the bourgeois customer amalgamate stock system with mathematics and numerical unsimilarity.

2. NOTATIONS AND ASSUMPTIONS

The model uses the following notations and assumptions.

2.1 Notations

D Demand rate
H_{v} Seller's unit holding cost / order
H_{b} Buyer's unit holding cost / order
s Buyer's unit shortage cost / order
s_{c} Seller's unit screening cost / order
n Seller's multiples of order
R_{1} Buyer's unit ordering cost / order
R_{2} Seller's unit setup cost / order
Q_{c} Optimum Order quantity
Q_{1} Backorder level
p Buyer's unit purchase cost / order / unit
F Space involved / unit/ item
X Total available storage space for buyer
W Maximum available stock to purchase for buyer

2.2 Assumptions

$>$ Consistent demand rate is considered in this model.
$>$ Shortages are going on for buyer as it were.
$>$ Seller screened the damaged product for resale.
$>$ The lot size Q_{c} satisfies the floor space and budget level requirement. Mathematically, the requirements will be taken as $F Q_{\mathrm{c}} \leq X$ and $p Q_{\mathrm{c}} \leq W$.

3. MODEL FORMULATION

In model formulation, system cost is derived for system development and it determine by the way of the usage of with and without restrictions.

3.1 System cost with no constraint

The total cost for buyer and seller is formulated as follows:
$\mathrm{TC}_{\mathrm{b}}=\frac{\mathrm{DR}_{1}}{Q_{\mathrm{c}}}+\frac{H_{b} Q_{1}^{2}}{2 Q_{\mathrm{c}}}+\frac{\mathrm{s}\left(Q_{\mathrm{c}}-Q_{1}\right)^{2}}{2 Q_{\mathrm{c}}}$ and
$\mathrm{TC}_{\mathrm{v}}=\frac{\mathrm{DR}_{2}}{\mathrm{n} Q_{\mathrm{c}}}+\frac{\mathrm{H}_{\mathrm{v}} \mathrm{n} Q_{\mathrm{c}}}{2}+\frac{\mathrm{s}_{\mathrm{c}} \mathrm{n} Q_{\mathrm{c}}}{2}$
The system cost is communicated as follows
$\mathrm{TC}_{\mathrm{s}}=\mathrm{TC}_{\mathrm{b}}+\mathrm{TC}_{\mathrm{v}}$
$\mathrm{TC}_{\mathrm{s}}=\frac{\mathrm{DR}_{1}}{Q_{\mathrm{c}}}+\frac{H_{b} Q_{1}^{2}}{2 Q_{\mathrm{c}}}+\frac{\mathrm{s}\left(Q_{\mathrm{c}}-Q_{1}\right)^{2}}{2 Q_{\mathrm{c}}}+\frac{\mathrm{DR}_{2}}{\mathrm{n} Q_{\mathrm{c}}}+\frac{\mathrm{H}_{\mathrm{v}} \mathrm{n} Q_{\mathrm{c}}}{2}+\frac{\mathrm{s}_{\mathrm{c}} \mathrm{n} Q_{\mathrm{c}}}{2}$
Equation (1) can be composed as

$$
\begin{equation*}
\mathrm{TC}_{\mathrm{s}}=Q_{1}^{2}\left[\frac{\mathrm{~s}+H_{b}}{2 \mathrm{Q}}\right]+Q_{1}[-\mathrm{s}]+\frac{\mathrm{DR}_{1}}{\mathrm{Q}}+\frac{\mathrm{sQ}}{2}+\frac{\mathrm{DR}_{2}}{\mathrm{nQ}}+\frac{\mathrm{H}_{\mathrm{v}} \mathrm{nQ}}{2}+\frac{\mathrm{s}_{\mathrm{c}} \mathrm{nQ}}{2} \tag{2}
\end{equation*}
$$

Equation (2) It is of the structure $a_{1} \mathrm{Q}_{1}^{2}+a_{2} Q_{1}+a_{3}$.
Q_{1} will be taken as, $\mathrm{Q}_{1}=\frac{-a_{2}}{2 a_{1}}$
$Q_{1}=\frac{\mathrm{sQ}}{\mathrm{s}+H_{b}}$
Equation (3) can be composed as
$\mathrm{TC}_{\mathrm{s}}=Q_{\mathrm{c}}\left[\frac{\mathrm{s}+\mathrm{H}_{\mathrm{v}} \mathrm{n}+\mathrm{s}_{\mathrm{c}} \mathrm{n}}{2}\right]+\frac{1}{Q_{\mathrm{c}}}\left[\mathrm{DR}_{1}+\frac{H_{b} Q_{1}^{2}}{2}+\frac{s Q_{1}^{2}}{2}+\frac{\mathrm{DR}_{2}}{\mathrm{n}}\right]-\mathrm{s} Q_{1}$
Equation (4) is of the structure $a_{1} \mathrm{Q}+\frac{a_{2}}{\mathrm{Q}}+a_{3}$.
Qwill be taken as, $\mathrm{Q}=\sqrt{\frac{a_{2}}{\mathrm{a}_{1}}}$
$Q_{\mathrm{c}}=\sqrt{\frac{2 \mathrm{D}\left(\mathrm{R}_{1}+\frac{\mathrm{R}_{2}}{\mathrm{n}}\right)\left(\mathrm{s}+H_{b}\right)}{\mathrm{n}\left(\mathrm{H}_{\mathrm{v}}+\mathrm{s}_{\mathrm{c}}\right)\left(\mathrm{s}+H_{b}\right)+\mathrm{sH}_{\mathrm{b}}}}$

3.2 Floor space constraint system cost

Lagrange multiplier function α is added on system cost because buyer's floor space capacity constraint is considered here.

The system cost with floor space constraint
$\mathrm{TC}_{\mathrm{s}}=\mathrm{TC}_{\mathrm{b}}+\mathrm{TC}_{\mathrm{v}}+\alpha\left(\mathrm{F} Q_{\mathrm{c}}-\mathrm{X}\right)$
$\mathrm{TC}_{\mathrm{s}}=\frac{\mathrm{DR}_{1}}{Q_{\mathrm{c}}}+\frac{H_{b} Q_{1}^{2}}{2 Q_{\mathrm{c}}}+\frac{\mathrm{s}\left(Q_{\mathrm{c}}-Q_{1}\right)^{2}}{2 Q_{\mathrm{c}}}+\frac{\mathrm{DR}_{2}}{\mathrm{n} Q_{\mathrm{c}}}+\frac{\mathrm{H}_{\mathrm{v}} \mathrm{n} Q_{\mathrm{c}}}{2}+\frac{\mathrm{s}_{\mathrm{c}} \mathrm{n} Q_{\mathrm{c}}}{2}+\alpha\left(\mathrm{F} Q_{\mathrm{c}}-\mathrm{X}\right)$
Equation (6) can be composed as
$\mathrm{TC}_{\mathrm{s}}=Q_{1}^{2}\left[\frac{\mathrm{~s}+H_{b}}{2 Q_{\mathrm{c}}}\right]+Q_{1}[-\mathrm{s}]+\frac{\mathrm{DR}_{1}}{Q_{\mathrm{c}}}+\frac{\mathrm{s} Q_{\mathrm{c}}}{2}+\frac{\mathrm{DR}_{2}}{\mathrm{n} Q_{\mathrm{c}}}+\frac{\mathrm{H}_{\mathrm{v}} \mathrm{n}_{\mathrm{c}}}{2}+\frac{\mathrm{s}_{\mathrm{c}} \mathrm{n} Q_{\mathrm{c}}}{2}+\alpha \mathrm{F} Q_{\mathrm{c}}-\alpha \mathrm{X}$
Equation (7) It is of the structure $a_{1} Q_{1}^{2}+a_{2} Q_{1}+a_{3}$.
Q_{1} will be taken as, $\mathrm{Q}_{1}=\frac{-a_{2}}{2 a_{1}}$
$Q_{1}=\frac{\mathrm{sQ}}{\mathrm{s}+H_{b}}$
Equation (7) can be composed as
$\mathrm{TC}_{\mathrm{s}}=Q_{\mathrm{c}}\left[\frac{\mathrm{s} H_{b}}{2\left(\mathrm{~s}+H_{b}\right)}+\frac{\mathrm{n}\left(\mathrm{H}_{\mathrm{v}}+\mathrm{s}_{\mathrm{c}}\right)}{2}+\alpha \mathrm{F}\right]+\frac{1}{Q_{\mathrm{c}}}\left[\mathrm{D}\left(\mathrm{R}_{1}+\frac{\mathrm{R}_{2}}{\mathrm{n}}\right)\right]-\alpha \mathrm{X}$
Equation (9) is of the structure $a_{1} \mathrm{Q}+\frac{a_{2}}{\mathrm{Q}}+a_{3}$.
Qwill be taken as, $Q=\sqrt{\frac{a_{2}}{a_{1}}}$
$Q_{\mathrm{c}}=\sqrt{\frac{2 \mathrm{D}\left(\mathrm{R}_{1}+\frac{\mathrm{R}_{2}}{\mathrm{n}}\right)\left(\mathrm{s}+H_{b}\right)}{\mathrm{sH} \mathrm{H}_{\mathrm{b}}+\left\{\mathrm{n}\left(\mathrm{H}_{\mathrm{v}}+\mathrm{s}_{\mathrm{c}}\right)+2 \alpha \mathrm{~F}\right\}\left(\mathrm{s}+H_{b}\right)}}$
Where, $\alpha=\frac{2 \mathrm{DF}^{2}\left(\mathrm{R}_{1}+\frac{\mathrm{R}_{2}}{\mathrm{n}}\right)\left(\mathrm{s}+H_{b}\right)-\mathrm{X}^{2}\left[\mathrm{sH}_{\mathrm{b}}+\mathrm{n}\left(\mathrm{H}_{\mathrm{v}}+\mathrm{s}_{\mathrm{c}}\right)\left(\mathrm{s}+H_{b}\right)\right]}{2 \mathrm{FX}^{2}\left(\mathrm{~s}+H_{b}\right)}$

3.3 Budget constraint system cost

Lagrange multiplier function β is added on system cost because buyer's budget constraint is considered here.

The system cost is,
$\mathrm{TC}_{\mathrm{s}}=\mathrm{TC}_{\mathrm{b}}+\mathrm{TC}_{\mathrm{v}}+\beta\left(\mathrm{p} Q_{\mathrm{c}}-\mathrm{W}\right)$
$\mathrm{TC}_{\mathrm{s}}=\frac{\mathrm{DR}_{1}}{Q_{\mathrm{c}}}+\frac{H_{b} Q_{1}^{2}}{2 Q_{\mathrm{c}}}+\frac{\mathrm{s}\left(Q_{\mathrm{c}}-Q_{1}\right)^{2}}{2 Q_{\mathrm{c}}}+\frac{\mathrm{DR}_{2}}{\mathrm{n} Q_{\mathrm{c}}}+\frac{\mathrm{H}_{\mathrm{v}} \mathrm{n} Q_{\mathrm{c}}}{2}+\frac{\mathrm{s}_{\mathrm{c}} \mathrm{n} Q_{\mathrm{c}}}{2}+\beta\left(\mathrm{p} Q_{\mathrm{c}}-\mathrm{W}\right)$
Equation (11) can be composed as
$\mathrm{TC}_{\mathrm{s}}=Q_{1}^{2}\left[\frac{\mathrm{~s}+H_{b}}{2 \mathrm{Q}}\right]+Q_{1}[-\mathrm{s}]+\frac{\mathrm{DR}_{1}}{Q_{\mathrm{c}}}+\frac{\mathrm{s}_{\mathrm{c}}}{2}+\frac{\mathrm{DR}_{2}}{\mathrm{n} Q_{\mathrm{c}}}+\frac{\mathrm{H}_{\mathrm{v}} \mathrm{n} Q_{\mathrm{c}}}{2}+\frac{\mathrm{s}_{\mathrm{c}} \mathrm{n} Q_{\mathrm{c}}}{2}+\beta \mathrm{p} Q_{\mathrm{c}}-\beta W$
Equation (13) It is of the structure $a_{1} \mathrm{Q}_{1}^{2}+a_{2} Q_{1}+a_{3}$.
Q_{1} will be taken as, $\mathrm{Q}_{1}=\frac{-a_{2}}{2 a_{1}}$
$Q_{1}=\frac{\mathrm{sQ}}{\mathrm{s}+H_{b}}$
Equation (11) can be composed as
$\mathrm{TC}_{\mathrm{s}}=Q_{\mathrm{c}}\left[\frac{\mathrm{s} H_{b}}{2\left(\mathrm{~s}+H_{b}\right)}+\frac{\mathrm{n}\left(\mathrm{H}_{\mathrm{v}}+\mathrm{s}_{\mathrm{c}}\right)}{2}+\beta \mathrm{p}\right]+\frac{1}{Q_{\mathrm{c}}}\left[\mathrm{D}\left(\mathrm{R}_{1}+\frac{\mathrm{R}_{2}}{\mathrm{n}}\right)\right]-\beta W$
Equation (12) is of the structure $a_{1} \mathrm{Q}+\frac{a_{2}}{\mathrm{Q}}+a_{3}$.
Qwill be taken as, $Q=\sqrt{\frac{a_{2}}{a_{1}}}$
$Q_{\mathrm{c}}=\sqrt{\frac{2 \mathrm{D}\left(\mathrm{R}_{1}+\frac{\mathrm{R}_{2}}{\mathrm{n}}\right)\left(\mathrm{s}+H_{b}\right)}{\mathrm{sH}+\left\{\mathrm{n}\left(\mathrm{H}_{\mathrm{V}}+\mathrm{s}_{\mathrm{c}}\right)+2 \beta \mathrm{p}\right\}\left(\mathrm{s}+H_{b}\right)}}$
Where, $\beta=\frac{2 \mathrm{Dp}^{2}\left(\mathrm{R}_{1}+\frac{\mathrm{R}_{2}}{\mathrm{n}}\right)\left(\mathrm{s}+\mathrm{H}_{\mathrm{b}}\right)-\mathrm{W}^{2}\left[\mathrm{sH}_{\mathrm{b}}+\mathrm{n}\left(\mathrm{H}_{\mathrm{v}}+\mathrm{s}_{\mathrm{c}}\right)\left(\mathrm{s}+H_{b}\right)\right]}{2 \mathrm{pW}^{2}\left(\mathrm{~s}+H_{b}\right)}$

3.4 Floor space and budget constraint system cost

Lagrange multiplier function α and β is added on system cost because buyer's floor space constraint and budget constraint is considered here.

The system cost with floor space and budget constraint
$\mathrm{TC}_{\mathrm{s}}=\mathrm{TC}_{\mathrm{b}}+\mathrm{TC}_{\mathrm{v}}+\alpha\left(\mathrm{F} Q_{\mathrm{c}}-\mathrm{X}\right)+\beta\left(\mathrm{p} Q_{\mathrm{c}}-\mathrm{W}\right)$
$\mathrm{TC}_{\mathrm{s}}=\frac{\mathrm{DR}_{1}}{Q_{\mathrm{c}}}+\frac{H_{b} Q_{1}^{2}}{2 Q_{\mathrm{c}}}+\frac{\mathrm{s}\left(Q_{\mathrm{c}}-Q_{1}\right)^{2}}{2 Q_{\mathrm{c}}}+\frac{\mathrm{DR}_{2}}{\mathrm{n} Q_{\mathrm{c}}}+\frac{\mathrm{H}_{\mathrm{v}} \mathrm{n} Q_{\mathrm{c}}}{2}+\frac{\mathrm{s}_{\mathrm{c}} \mathrm{n} Q_{\mathrm{c}}}{2}+\alpha\left(\mathrm{F} Q_{\mathrm{c}}-\mathrm{X}\right)+\beta\left(\mathrm{p} Q_{\mathrm{c}}-\mathrm{W}\right)$
Equation (16) can be composed as
$\mathrm{TC}_{\mathrm{s}}=Q_{1}^{2}\left[\frac{\mathrm{~s}+\mathrm{H}_{b}}{2 \mathrm{Q}}\right]+Q_{1}[-\mathrm{s}]+\frac{\mathrm{DR}_{1}}{Q_{\mathrm{c}}}+\frac{\mathrm{s} Q_{\mathrm{c}}}{2}+\frac{\mathrm{DR}_{2}}{\mathrm{n} Q_{\mathrm{c}}}+\frac{\mathrm{H}_{\mathrm{v}} \mathrm{n} Q_{\mathrm{c}}}{2}+\frac{\mathrm{s}_{\mathrm{c}} \mathrm{n}_{\mathrm{c}}}{2}+\alpha \mathrm{F} Q_{\mathrm{c}}-\alpha \mathrm{X}+\beta \mathrm{p} Q_{\mathrm{c}}-\beta W$
Equation (17), it is of the structure $a_{1} \mathrm{Q}_{1}^{2}+a_{2} Q_{1}+a_{3}$.
Q_{1} will be taken as, $Q_{1}=\frac{-a_{2}}{2 a_{1}}$
$Q_{1}=\frac{\mathrm{s} Q_{\mathrm{c}}}{\mathrm{s}+H_{b}}$

Equation (16) can be composed as
$\mathrm{TC}_{\mathrm{s}}=Q_{\mathrm{c}}\left[\frac{\mathrm{s} H_{b}}{2\left(\mathrm{~s}+H_{b}\right)}+\frac{\mathrm{n}\left(\mathrm{H}_{\mathrm{v}}+\mathrm{s}_{\mathrm{c}}\right)}{2}+\alpha \mathrm{F}+\beta \mathrm{p}\right]+\frac{1}{Q_{\mathrm{c}}}\left[\mathrm{D}\left(\mathrm{R}_{1}+\frac{\mathrm{R}_{2}}{\mathrm{n}}\right)\right]-\alpha \mathrm{X}-\beta W$
Equation (19) is of the structure $a_{1} \mathrm{Q}+\frac{a_{2}}{\mathrm{Q}}+a_{3}$.
Qwill be taken as, $Q=\sqrt{\frac{a_{2}}{a_{1}}}$
$Q_{\mathrm{c}}=\sqrt{\frac{2 \mathrm{D}\left(\mathrm{R}_{1}+\frac{\mathrm{R}_{2}}{\mathrm{n}}\right)\left(\mathrm{s}+H_{b}\right)}{\mathrm{sH} \mathrm{H}_{\mathrm{b}}+\left\{\mathrm{n}\left(\mathrm{H}_{\mathrm{v}}+\mathrm{s}_{\mathrm{c}}\right)+2(\alpha \mathrm{~F}+\beta \mathrm{p})\right\}\left(\mathrm{s}+H_{b}\right)}}$
Where, $\alpha=\frac{2 \mathrm{DF}^{2}\left(\mathrm{R}_{1}+\frac{\mathrm{R}_{2}}{\mathrm{n}}\right)\left(\mathrm{s}+H_{b}\right)-\mathrm{X}^{2}\left[\mathrm{sH}_{\mathrm{b}}+\left\{\mathrm{n}\left(\mathrm{H}_{\mathrm{v}}+\mathrm{s}_{\mathrm{c}}\right)+2 \beta \mathrm{p}\right\}\left(\mathrm{s}+H_{b}\right)\right]}{2 \mathrm{FX}^{2}\left(\mathrm{~s}+H_{b}\right)}$
Where, $\beta=\frac{2 \mathrm{Dp}^{2}\left(\mathrm{R}_{1}+\frac{\mathrm{R}_{2}}{\mathrm{n}}\right)\left(\mathrm{s}+\mathrm{H}_{\mathrm{b}}\right)-\mathrm{W}^{2}\left[\mathrm{sH} \mathrm{H}_{\mathrm{b}}+\left\{\mathrm{n}\left(\mathrm{H}_{\mathrm{v}}+\mathrm{s}_{\mathrm{c}}\right)+2 \alpha \mathrm{~F}\right\}\left(\mathrm{s}+H_{b}\right)\right]}{2 \mathrm{pW}^{2}\left(\mathrm{~s}+H_{b}\right)}$

3. 5 Solution Procedure for integrated expected total cost

Stage 1. Track down request amount Q_{c} and backorder level Q_{1} by (5) and (3). If Q_{c} satisfies both floor space and budget requirements, then Q_{c} is the ideal worth to limit the system cost and go to stage 5 .
Stage 2. Else track down request amount Q_{c} and backorder level Q_{1} by (10) and (8). If Q_{c} satisfies floor space requirement, then Q_{c} is the ideal worth to limit the system cost and go to stage 5 .
Stage 3. Else track down request amount Q_{c} and backorder level Q_{1} by (15) and (13). If Q_{c} satisfies budget requirement, then Q_{c} is the ideal worth to limit the system cost and go to stage 5.
Stage 4. If the above stages are not satisfied then both requirements are active. Now, track down request amount Q_{c} and backorder level Q_{1} by (20) and (18), then Q_{c} is the ideal worth to limit the system cost and go to stage 5 .
Stage 5. End.

4. NUMERICAL EXAMPLE

Example 1

Let $D=4000, R_{1}=200, R_{2}=500, H_{b}=0.3, H_{v}=0.5, s_{c}=0.5, p=0.5, s=1, n=2, F=3, X=$ $2000, W=300$.
The Optimal solution is,
$Q_{c}=500 Q_{1}=384 T C_{s}=4.1577 \times 10^{3}$ satisfies the floor space constraint $F Q_{c} \leq 2000$ and budget constraint $p Q_{c} \leq 300$.

4.1 Sensitivity Analysis

The sensitivity analysis is completed with the aid of taking each boundary in turn and holding the leftover boundaries unaltered. The impacts are displayed in Table 1.

Table 1: Effects of changes in the value of system parameters

Decision variable		\boldsymbol{Q}	$\boldsymbol{Q}_{\boldsymbol{1}}$	$\boldsymbol{T C}_{\boldsymbol{b}}$	$\boldsymbol{T C}_{\boldsymbol{v}}$	$\boldsymbol{T C}_{\boldsymbol{s}}$
\boldsymbol{p}	$\mathbf{- 5 0}$	500	384	1.6577×10^{3}	2.5000×10^{3}	4.1577×10^{3}
	$-\mathbf{2 5}$	500	384	1.6577×10^{3}	2.5000×10^{3}	4.1577×10^{3}
	$+\mathbf{2 5}$	480	369	1.7221×10^{3}	2.5633×10^{3}	4.2854×10^{3}
	$\mathbf{+ 5 0}$	400	307	2.0462×10^{3}	2.9000×10^{3}	4.9462×10^{3}
\boldsymbol{n}	$-\mathbf{5 0}$	500	384	1.6577×10^{3}	4.2500×10^{3}	5.9077×10^{3}
	$-\mathbf{2 5}$	500	384	1.6577×10^{3}	3.0417×10^{3}	4.6994×10^{3}
	$+\mathbf{2 5}$	500	384	1.6577×10^{3}	2.2250×10^{3}	3.8827×10^{3}
\boldsymbol{F}	$\mathbf{+ 5 0}$	500	384	1.6577×10^{3}	2.0833×10^{3}	3.7410×10^{3}
	$\mathbf{- 5 0}$	600	461	1.4026×10^{3}	2.2667×10^{3}	3.6692×10^{3}

	-25	600	461	1.4026×10^{3}	2.2667×10^{3}	3.6692×10^{3}
	+25	400	307	2.0462×10^{3}	2.9000×10^{3}	4.9462×10^{3}
	+50	333	256	2.4385×10^{3}	3.3333×10^{3}	5.7718×10^{3}
\boldsymbol{X}	-50	250	192	3.2288×10^{3}	4.2500×10^{3}	7.4788×10^{3}
	-25	375	288	2.1766×10^{3}	3.0417×10^{3}	5.2183×10^{3}
	+25	600	461	1.4026×10^{3}	2.2666×10^{3}	3.6692×10^{3}
	+50	600	461	1.4026×10^{3}	2.2666×10^{3}	3.6692×10^{3}
\boldsymbol{W}	-50	300	230	2.7013×10^{3}	3.6333×10^{3}	6.3346×10^{3}
	-25	350	269	2.3261×10^{3}	3.2071×10^{3}	5.5332×10^{3}
	+25	500	384	1.6577×10^{3}	2.5000×10^{3}	4.1577×10^{3}
	+50	500	384	1.6577×10^{3}	2.5000×10^{3}	4.1577×10^{3}
S	-50	500	312	1.6469×10^{3}	2.5000×10^{3}	4.1469×10^{3}
	-25	500	357	1.6536×10^{3}	2.5000×10^{3}	4.1536×10^{3}
	+25	500	403	1.6605×10^{3}	2.5000×10^{3}	4.1605×10^{3}
	+50	500	416	1.6625×10^{3}	2.5000×10^{3}	4.1625×10^{3}
$\boldsymbol{S}_{\boldsymbol{c}}$	-50	500	384	1.6577×10^{3}	2.3750×10^{3}	4.0327×10^{3}
	-25	500	384	1.6577×10^{3}	2.4375×10^{3}	4.0952×10^{3}
	+25	500	384	1.6577×10^{3}	2.5625×10^{3}	4.2202×10^{3}
	+50	500	384	1.6577×10^{3}	2.6250×10^{3}	4.2827×10^{3}

Fig 1: Effect of changes when p, n, F, X, W, s, s_{c} increases

5. CONCLUSION

This study revealed a supply chain management consisting of a seller and buyer with the consideration of shortage, screening cost and constraints (floor space and budget constraints). Our model is suitable to solve a problem of optimizing the order size while minimizing system cost. The developed algorithm is simple to understand and it requires nominal times to computation. The similar research findings is also available for multiple-buyer multiple-vendor systems, shortages, postpone installments, exchange credit etc.,

REFERENCES

1. L.E. Cardenas-Barron, H.M. Wee, M.F. Blos, Solving the vendor-buyer integrated inventory system with arithmetic-geometric inequality, Mathematical and Computer Modelling, 53, 991-997, 2011.
2. S. W. Chiu, S. L. Wang, and Y. P. Chiu, Determining the optimal run time for EPQ model with scrap, rework. and stochastic breakdowns. European Journal of Operational Research, 180, 664-676, 2007.
3. P. Jawla and S. R. Singh, Multi-item economic production quantity model for imperfect items with multiple production setups and rework under the effect of preservation technology and learning environment. International Journal of Industrial Engineering Computations, 7, 703-716, 2016.
4. Karmveer and Ajendra Sharma, Research Design Considerations for Deteriorating Items of Inventory Models, World Scientific News, 124(2), 86-93, 2019.
5. A. Khanna, A.Kishore and C. K. Jaggi, Strategic production modeling for defective items with imperfect inspection process, rework, and sales return under two-level trade credit. International Journal of Industrial Engineering Computations, 8, 85-118, 2017.
6. P. Muniappan, M. Ravithammal, M. and Haj Meeral, An Integrated Economic Order Quantity Model Involving Inventory Level and Ware House Capacity Constraint, International Journal of Pharmaceutical Research, 12(3), 791-793, 2020.
7. M. Rabbani and L. Aliabadi, An inventory model with credit, price and marketing dependent demand under permitted delayed payments and shortages: A signomial geometric programming approach. Uncertain Supply Chain Management, 7(1), 33-48, 2019.
8. M. Ravithammal, P. Muniappan, and S. Hemamalini, EOQ inventory model using algebraic method with inventory level constraint, Journal of International Pharmaceutical Research, 46(1), 813-815, 2019.
9. R. Uthayakumar and M. G. Kumar, Constrained integrated inventory model for multi-item under mixture of distributions. RAIRO - Operations Research, 52(3), 849-893, 2018.
10. M. K. Vediappan, M. Ravithammal, and P. Muniappan, Integrated Coordination Inventory Model for Buyer - Vendor Using Lagrange Multiplier Technique. Jour of Adv Research in Dynamical \& Control Systems, 11(1), 283-287, 2019.
