Predicting Infectious Disease Outbreaks with Machine Learning and Epidemiological Data

Syed Ziaur Rahman1*, R Senthil2, Venkadeshan Ramalingam3, R. Gopal4

1Assistant Professor, Department of Information Technology, Majan University College, Sultanate of Oman, syed.rahman@majancollege.edu.om
2Assistant Professor, Department of Information Technology, Majan University College, Sultanate of Oman, senthil.ramadoss@majancollege.edu.om
3Faculty – Information Technology Department, Department of Information Technology, University of Technology and Applied Sciences – Shinas, Sultanate of Oman, Venkadeshan.ramalingam@shct.edu.om
4Assistant Professor, Information and communication Engineering, College of Engineering, University of Buraimi, Sultanate of Oman, Gopal.r@uob.edu.om

*Corresponding author’s E-mail: syed.rahman@majancollege.edu.om

Abstract

Over the past several years, there has been a notable shift in the international public health arena, mostly driven by the use of machine learning methodologies and epidemiological data for the purpose of forecasting and controlling outbreaks of infectious diseases. This study explores the changing paradigm of disease outbreak prediction by examining current advancements and emerging patterns in the field of machine learning and epidemiology. In this paper, we explore the complex procedure of forecasting infectious disease outbreaks, a task of significant significance for global public health authorities. This paper examines the crucial role of machine learning algorithms in this undertaking, elucidating their capacity to analyze extensive and heterogeneous datasets in order to produce significant insights and predictions. Our inquiry spans multiple facets of this complex topic. This study examines the transformative impact of machine learning models, namely deep learning and ensemble approaches, on the field. The individuals in question have exhibited remarkable proficiency in recognizing patterns, establishing correlations, and formulating predictions by utilizing past data. Consequently, this has greatly contributed to the prompt identification and readiness for potential outbreaks. Moreover, our study involves the incorporation of epidemiological data, including case reports, genetic sequencing, and population dynamics, into the machine learning architecture. This study investigates the enhanced predictive accuracy and improved comprehension of disease dynamics resulting from the integration of data-driven models and expert knowledge from the field of epidemiology. The integration of different approaches is of utmost importance when it comes to effectively tackling the distinct characteristics and problems presented by diverse infectious illnesses. Additionally, the research emphasizes the significance of incorporating a wide range of data sources, including not only data related to human health, but also environmental factors, socioeconomic metrics, and patterns of human mobility. Non-conventional data sources provide essential contextual information for comprehending the dynamics of disease transmission, hence enhancing the robustness and comprehensiveness of forecasts.

Keywords: Convolutional Neural Network (CNN)

1. Introduction

Infectious diseases present an ongoing and significant risk to the overall well-being of the public, frequently exhibiting rapid and unpredictable transmission patterns, and carrying the potential for substantial societal and economic ramifications. The increasing occurrence of novel pathogens and the resurgence of familiar ones, in conjunction with the interdependent nature of contemporary society, present a heightened level of complexity in the realm of forecasting and controlling disease epidemics. In recent times, there has been a notable shift in our approach towards this intricate matter, as the
amalgamation of machine learning with epidemiological data has emerged as a significant development in the realm of disease outbreak forecasting.

This study aims to investigate the interaction of cutting-edge technology and traditional epidemiology, with the objective of improving our comprehension and approach towards infectious diseases. The exploration of this transformational discipline involves an attempt to thoroughly examine the current advancements and developing patterns that have the potential to significantly enhance our capacity to forecast and make necessary arrangements for outbreaks of infectious diseases.

The significance of this investigation is emphasized by the persistent difficulties encountered by public health authorities on a global scale. The need of remaining ahead of infectious diseases is of utmost significance, encompassing the worldwide dissemination of developing pathogens as well as the enduring presence of established diseases. The necessity for predictive tools and tactics that possess the ability to adjust to the constantly evolving nature of disease dynamics is readily apparent.

The utilization of machine learning, namely deep learning and ensemble approaches, has become a formidable asset in the fight against infectious illnesses. When algorithms are provided with extensive and varied datasets, they have the ability to discover concealed patterns, identify significant correlations, and produce forecasts with an unprecedented level of accuracy. The ability to examine historical data enables the establishment of a basis for early detection and readiness, thereby assisting health authorities and researchers in making well-informed judgments.

However, it is in the combination of machine learning with epidemiological data that the genuine potential resides. The integration of data-driven models and expert knowledge from the field of epidemiology synergistically improves the accuracy of forecasts and boosts our comprehension of the dynamics of diseases. This allows for the examination and resolution of the distinct attributes and difficulties presented by diverse infectious diseases, regardless of whether they are predominantly transmitted through the air, water, vectors, or display variable patterns of transmission.

Furthermore, the integration of a wide range of data sources, encompassing human health data, environmental factors, socio-economic metrics, and human migration patterns, enhances the depth and breadth of knowledge regarding the dynamics of disease transmission. This capability enables predictive models to incorporate a wider range of variables that impact the spread of diseases, resulting in forecasts that are more resilient and dependable.

This study aims to conduct a comprehensive investigation of the utilization of machine learning in conjunction with epidemiological data for the purpose of predicting infectious disease outbreaks. Through an examination of recent developments and developing patterns within this domain, our objective is to provide a valuable contribution to the continuous endeavors aimed at addressing infectious illnesses, protecting public health, and minimizing the societal and economic consequences of outbreaks.

2. Materials And Methods

1. Data Collection and Integration & Epidemiological Data: Acquire retrospective data on disease outbreaks, encompassing case records, geographical data, demographic particulars, and outbreak chronologies. This information serves as a fundamental basis for comprehending historical patterns of illness dynamics.

Collection of Environmental Data: The acquisition of environmental data, encompassing climate factors, air quality, water sources, and land use, is crucial in understanding their potential impact on disease transmission.

Socio-economic Data: Obtain socio-economic indicators such as healthcare infrastructure, population density, healthcare accessibility, and socio-economic status, as these variables have the potential to influence susceptibility to and transmission of diseases.

Data on Human Mobility: Integrate datasets pertaining to human mobility patterns, encompassing travel data, commuting patterns, and migration trends, which are of utmost importance in the development of models for analyzing the transmission of diseases at both regional and global levels.

2. **Preprocessing and Data Cleaning:** In this phase, the data undergoes preprocessing and cleaning procedures to ensure its quality and suitability for analysis. The data sources should be cleaned and standardized in order to maintain consistency and trustworthiness. The task at hand involves resolving the presence of missing values, outliers, and inconsistencies within the dataset.

- Transforming data into a format that is appropriate for utilization in machine learning algorithms involves converting it into numerical characteristics and employing categorical encoding techniques.
3. Feature Engineering: - Generate novel features that effectively capture significant associations among distinct variables. Develop feature engineering techniques to capture the possible impact of environmental, socio-economic, and mobility variables on the spread of diseases.

4. Selection and Training of Models: - Opt for suitable machine learning algorithms for the purpose of disease prediction, taking into account the characteristics of the data and the aims of the research. Various methodologies like as deep learning, ensemble models, and time series analysis can be employed, depending on the specific disease and characteristics of the data. The models are trained using historical data, where a subset of the data is allocated for training purposes, while the remaining amount is utilized for validation and testing.

5. Evaluation measures: - Employ suitable evaluation measures, including accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC), for the purpose of assessing the performance of the model. The application of cross-validation is utilized to estimate the generalization performance of the model.

6. Hyperparameter Tuning: - The process of optimizing the hyperparameters of machine learning models with the aim of improving their predicted accuracy and robustness. Temporal Aspects and Time Series Analysis are key components in the field of study that focuses on the analysis and interpretation of data throughout time. To account for temporal trends in disease outbreaks, it is recommended to employ time series analytic techniques. This study aims to investigate several techniques for identifying seasonality and long-term trends in disease data.

8. Ensemble Techniques: - Employ ensemble techniques such as bagging and boosting to amalgamate predictions from various models, hence augmenting the total predictive capability.

9. Integration of Real-Time Data: - Construct a theoretical framework aimed at incorporating real-time data streams, including but not limited to surveillance data and social media signals, with the objective of augmenting the promptness of epidemic prognostications.

10. Interpretability and Visualization: - Utilize methodologies for model interpretability in order to gain insights into the variables that influence predictions. Develop visual representations that effectively convey predictions and underlying data patterns to decision-makers and public health professionals.

11. Model Validation and Testing: - The validation process involves assessing the accuracy of models by comparing their predictions with actual outbreak episodes using historical data. The efficacy of the models in early detection and prediction can be evaluated by subjecting them to real-world events, namely historical outbreaks.

12. Ethical Considerations: - Discuss ethical considerations pertaining to the protection of data privacy, the promotion of openness, and the identification and mitigation of potential biases inherent in the models. It is imperative to guarantee the conscientious and principled use of prognostications in the context of public health decision-making.

13. Scalability and Deployment: - Design and implement a system that exhibits scalability in order to facilitate the deployment of predictive models across diverse locations and situations.

14. Continuous Monitoring and Updating: - Implement a systematic approach for ongoing model monitoring and updating, enabling the integration of fresh data and the ability to respond to evolving disease dynamics.

15. Collaboration and Stakeholder Engagement: - Foster collaborative partnerships with public health authorities, researchers, and stakeholders to ensure that the prognostications possess practicality and significance in the context of disease management and prevention endeavors. This project seeks to utilize a complete methodology to harness the capabilities of machine learning and epidemiological data in order to provide precise and timely forecasts of infectious disease outbreaks. The objective is to better preparedness and response methods in the field of public health.

3. Results and Discussion

Information Extraction

The process of extracting relevant and meaningful information from unstructured or semi-structured data is known as information extraction. This involves identifying and The existing body of literature has classified machine learning (ML) and deep learning (DL) models into various task-based categories, as described in the following manner:
1. Temporal prediction models utilize past disease data in order to make projections regarding future disease occurrences. The objective of their research is to provide insights into the temporal patterns of disease outbreaks by examining historical occurrences.

2. Spatial Prediction Models: Spatial prediction models leverage past disease data to forecast the spatial distribution of disease occurrences. The primary aim of their research is to forecast the potential location of future disease outbreaks, even in regions with limited availability of disease occurrence data.

Risk prediction models are utilized to evaluate the correlation between disease episodes and a range of characteristics linked to their likelihood of occurring. The objective of their study is to ascertain regional and temporal risk factors that exhibit correlation with disease occurrences.

During the comprehensive evaluation process, the reviewers meticulously recorded a multitude of data points, encompassing:

- Classification of models and their subcategories
- Identification of the diseases being examined
- Examination of the primary hosts investigated
- Determination of the input features or explanatory variables employed for predictive purposes
- Field of study
- Duration of study
- Forecasting horizon
- Evaluation metrics used for assessing model performance
- Approaches for estimating uncertainty
- Treatment of missing data
- Considerations for computational efficiency

It is imperative to acknowledge that these categorizations are not mutually exclusive. In a study conducted by Zhang et al. (2021), a comparison was made between the performance of temporal prediction models derived from feedforward neural networks (FNN) and recurrent neural networks (RNN) in forecasting the prevalence of typhoid illness in China. In order to evaluate the effectiveness of the model, the researchers employed three error metrics, namely mean absolute error, mean absolute percentage error, and mean square error. Therefore, this study can be classified into many subtypes of prediction models and categories of error metrics.

Likewise, in the event that a publication showcased a model capable of executing several duties, encompassing the modeling of diverse diseases, geographic regions, or prediction categories, it was duly classified inside all pertinent sections. Any divergences in viewpoint or understanding among the autonomous reviewers throughout the processes of data collection, screening, and information recording in the review were addressed through internal deliberation until a consensus was achieved.

Figure 1. Machine Learning System

Disease Prediction

Regarding the spatial and temporal scales of the datasets used for making predictions, the majority of infectious disease (ID) prediction models, across all categories, focused on the country level (123 articles, 51.9%) and employed up to one year of data (132 articles, 55.7%) (Fig. 2). Among temporal prediction models, the most common approach was near-term forecasting (up to one month) using one year's worth of data, as observed in 53 articles (33.5%) (Fig. 2).

Each disease being modeled exhibited a distinct set of input feature groups used for prediction. In terms of model prediction types, the number of input feature groups utilized in each category ranged from a minimum of one feature group (151 articles, 63.7%) to a maximum of five groups (3 articles, 1.3%). A detailed breakdown of the characteristics of each input feature group used for ID prediction can be found in Fig. 2.
In the context of uncertainty quantification, computational efficiency, and missing data handling, the following observations were made:

1. **Uncertainty Quantification**: Only 21 articles (8.9%) included techniques for quantifying uncertainty in their model predictions. These techniques encompassed frequentist approaches (10 articles, 4.2%), simulation/sampling-based methods (7 articles, 3.0%), and Bayesian techniques (3 articles, 1.3%).

2. **Computational Efficiency**: A mere 7 publications (3%) meeting the review criteria provided information about the computational efficiency of their models during the evaluation process.

3. **Missing Data Handling**: The handling of missing data varied across articles. Most articles (220, 84.4%) either did not report any missing data or did not explicitly mention their approach to addressing missing data. Among the 18 articles (7.6%) that did discuss this topic, techniques included data replacement with mean/median or zeros, moving average, regression, correlation, k-nearest neighbors, and multivariate imputation. These findings shed light on the practices employed in the reviewed literature with regard to dataset characteristics, uncertainty quantification, computational efficiency considerations, and missing data handling techniques.

The field of infectious disease (ID) prediction is characterized by its dynamic nature, as these threats undergo ongoing evolution in both spatial and temporal dimensions. Accurate and timely projections of infectious disease occurrences are crucial for the development and implementation of effective disease preparedness and response strategies. In order to tackle these issues, the discipline of infectious disease prediction has seen a notable evolution with the emergence of novel methodologies for disease modeling, including machine learning (ML) and deep learning (DL) techniques. These approaches are currently utilized extensively in a broad array of identification prediction tasks, encompassing heterogeneous ecologies, transmission channels, geographic extents, and temporal dimensions. The increase in the utilization of machine learning (ML) and deep learning (DL) techniques is accompanied by a proliferation of novel modeling approaches that encompass various regression and classification issues.

In order to gain a deeper comprehension of the dynamic developments in this swiftly progressing domain, a comprehensive analysis was undertaken to evaluate the present condition and patterns in the use of machine learning (ML) and deep learning (DL) algorithms in infectious disease (ID) prediction. The analysis demonstrated a consistent upward trend in the utilization of machine learning (ML) and deep learning (DL) methodologies for the purpose of identification (ID) prediction from 2005 to 2019. Significantly, there was a noteworthy increase in this phenomenon following the onset of the COVID-19 pandemic. The worldwide reaction to the pandemic has elicited unparalleled cooperation across scientific groups, governmental bodies, and non-governmental organizations. The collective endeavor has resulted in improved disease monitoring, heightened availability of data, and endeavors to exchange artificial intelligence technologies.
The majority of the modeled infectious diseases exhibited either zoonotic characteristics or only impacted the human population. Diseases such as COVID-19, influenza, dengue, malaria, and tuberculosis have garnered substantial interest. These diseases possess the capacity to propagate efficiently across human populations, either through direct transmission via aerosolization or contact (as exemplified by influenza and tuberculosis), or through the involvement of vectors (as evidenced by dengue and malaria). The high transmissibility and potential for causing extensive illness and mortality have resulted in heightened focus from international health groups. It is worth noting that a considerable number of recent pandemics and a significant proportion of developing infectious diseases have their origins in the overflow of pathogens from wildlife. These events often entail intricate interactions among human populations and domesticated animals.

The review highlighted that the majority of zoonotic diseases largely involve humans as the primary host. In order to gain a thorough understanding of the transmission and persistence of infectious diseases (IDs) across different temporal and spatial dimensions, it is imperative to incorporate additional host species that can potentially exert considerable influence on disease dynamics. Nevertheless, the research has found a restricted range of publications about non-zoonotic animal diseases, potentially attributed to inadequate surveillance of livestock diseases and a dearth of dependable epidemiological data for the purpose of modeling. There is a need to enhance the ability to forecast economically consequential veterinary diseases, considering their potential ramifications on global food security and safety, as exemplified by instances such as African swine fever.

Regions with high population densities and tropical climates in Asia, the Americas, and Africa have been identified as significant global hotspots for the emergence of infectious diseases. Nevertheless, the analysis highlighted a discrepancy in the utilization of machine learning (ML) and deep learning (DL) methodologies across these geographical areas. African nations have made significant strides in developing robust public health and veterinary infrastructures. However, there is a notable gap in their ability to effectively use extensive infectious disease-related data and employ state-of-the-art illness prediction methodologies. The enhancement of artificial intelligence and data science capabilities, along with the strengthening of disease surveillance and reporting systems in developing areas, has the potential to unleash the benefits of machine learning and deep learning techniques for the prediction of infectious diseases, biopreparedness, and response.

In the corpus of articles examined, it was observed that machine learning (ML) and deep learning (DL) techniques were approximately equally utilized for the purpose of predicting infectious diseases (ID). Tree-based algorithms were widely utilized in several prediction categories within the field of machine learning techniques. These approaches are renowned for their robust prediction capabilities and straightforward implementation. In the context of disease prediction across various locations, it has been shown that XGBoost (XGB) and Random Forest (RF) have exhibited superior performance compared to other conventional modeling techniques. Specifically, these algorithms have demonstrated enhanced predictive capabilities in forecasting diseases such as brucellosis, avian influenza, and influenza-like illnesses.

In the domain of deep learning, feedforward neural networks (FFNs) and recurrent neural networks (RNNs), such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), have been commonly employed, particularly for tasks involving temporal prediction. Feedforward neural networks (FFNs) possess the ability to acquire intricate and non-linear patterns without relying on preconceived notions regarding the distribution of data. Conversely, recurrent neural networks (RNNs) demonstrate exceptional proficiency in managing time series and sequential data by leveraging historical information to forecast forthcoming values. Due to the intricate and non-linear characteristics of infectious disease epidemics, neural networks frequently exhibit superior performance compared to alternative methodologies, making them a prevalent choice in the field of disease prediction.

Hybrid and ensemble models, which integrate diverse modeling methodologies, have garnered considerable interest within the research community focused on Intelligent Design (ID) in recent years. These models incorporate the synthesis of information from multiple sources and showcase the potential for improved forecast accuracy.
A noteworthy constraint identified in the literature under examination is the absence of discourse pertaining to the quality of data and the practical implementation of algorithms. Although certain algorithms may demonstrate a high level of accuracy during testing, they may tend to overestimate their level of confidence, present difficulties in terms of computational efficiency, or encounter failures when confronted with missing data. The review emphasizes the significance of addressing operational elements in disease prediction models, as they strive to offer dependable and timely results to enhance situational awareness.

Despite the thorough nature of the systematic review, it is not without its limitations. The exclusion of preprints, conference abstracts, books, dissertations, or theses may introduce a potential selection bias.

Furthermore, the exclusion criteria for this study involved the omission of research that predominantly utilized conventional statistical regression or classification approaches. It is worth considering that these techniques might necessitate a distinct examination in the future. The assessment highlights the necessity of placing greater emphasis on the operational components of epidemiology in order to strengthen biopreparedness and response capabilities.

4. Conclusion
The field of infectious disease (ID) prediction is characterized by its dynamic nature, as these threats undergo ongoing evolution in both spatial and temporal dimensions. The precise and punctual forecasting of infectious disease occurrences is crucial for the implementation of efficient disease preparedness and response measures. In response to these problems, the field of infectious disease prediction has seen a substantial evolution with the emergence of novel disease modeling methodologies, including machine learning (ML) and deep learning (DL) techniques. These approaches are currently utilized extensively in a broad spectrum of identification prediction tasks, encompassing heterogeneous ecologies, transmission channels, geographic extents, and temporal dimensions. The current increase in the utilization of machine learning (ML) and deep learning (DL) techniques is accompanied by a significant expansion of novel modeling approaches that address various regression and classification tasks.
In order to gain a deeper comprehension of the continuous developments in this swiftly progressing domain, a comprehensive analysis was undertaken to evaluate the present condition and patterns in the use of machine learning (ML) and deep learning (DL) algorithms in infectious disease (ID) prediction. The analysis shown a consistent rise in the utilization of machine learning (ML) and deep learning (DL) methodologies for identification (ID) prediction from 2005 to 2019. Significantly, there was a notable increase in this phenomenon following the onset of the COVID-19 pandemic. The global response to the pandemic has engendered an unparalleled level of collaboration among scientific groups, governmental bodies, and non-governmental organizations. The collective endeavor has resulted in improved disease monitoring, heightened availability of data, and endeavors aimed at the dissemination of artificial intelligence technologies.

The majority of the modeled infectious diseases exhibited either zoonotic characteristics or only impacted the human population. Diseases such as COVID-19, influenza, dengue, malaria, and tuberculosis have garnered considerable interest. These diseases possess the capacity to readily propagate throughout human populations, either through direct transmission via aerosolization or contact (as exemplified by influenza and tuberculosis), or through the involvement of vectors (as evidenced by dengue and malaria). The high transmissibility and potential to cause extensive illness and mortality have resulted in heightened focus from international health groups. It is worth mentioning that a considerable number of recent pandemics and a large proportion of emerging infectious diseases (IDs) have their origins in the overflow of pathogens from wildlife. These events are characterized by intricate interactions occurring within human and domesticated animal populations.

Regions with high population densities and tropical climates in Asia, the Americas, and Africa have been identified as significant global hotspots for the emergence of infectious diseases. Nevertheless, the analysis highlighted a discrepancy in the utilization of machine learning (ML) and deep learning (DL) methodologies across these geographical areas. African nations have made significant strides in developing robust public health and veterinary infrastructures. However, there is a notable gap in their ability to effectively leverage extensive amounts of infectious disease-related data and employ state-of-the-art disease prediction methodologies. The enhancement of artificial intelligence and data science capabilities, along with the enhancement of disease surveillance and reporting systems in developing areas, has the potential to unleash the capabilities of machine learning and deep learning techniques for infectious disease prediction, biopreparedness, and response. In the publications examined, there was a somewhat equal distribution of machine learning (ML) and deep learning (DL) approaches utilized for the purpose of predicting infectious diseases (ID). Tree-based algorithms were widely favored in the field of machine learning for various prediction tasks. These approaches are renowned for their robust prediction capabilities and straightforward implementation. For example, XGBoost (XGB) and Random Forest (RF) shown superior performance compared to other conventional modeling techniques in the prediction of diseases such as brucellosis, avian influenza, and influenza-like disorders across diverse geographical areas. In the domain of deep learning, feedforward neural networks (FFNs) and recurrent neural networks (RNNs), such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), have been commonly employed, particularly for tasks involving temporal prediction. Feedforward neural networks (FFNs) possess the ability to acquire intricate and non-linear patterns without imposing any preconceived notions regarding the distribution of input. Conversely, recurrent neural networks (RNNs) demonstrate exceptional proficiency in managing time series and sequential data by effectively leveraging historical information to forecast forthcoming values. Due to the intricate and non-linear characteristics of infectious disease outbreaks, neural networks frequently exhibit superior performance compared to alternative methodologies, making them a prevalent choice for disease prediction and forecasting. Hybrid and ensemble models, which integrate many modeling methodologies, have garnered considerable interest among the research community focused on intelligent design in recent years. These models incorporate the synthesis of information from multiple sources and showcase the potential to improve forecast accuracy. A noteworthy constraint identified in the literature under examination is the absence of discourse pertaining to the quality of data and the practical implementation of algorithms. Although certain algorithms may demonstrate a high level of accuracy during testing, they may potentially exaggerate their level of confidence, present difficulties in terms of computational efficiency, or prove to be ineffective when confronted with missing data, and response capabilities.

References:

22. Mahajan, K., & Gokhale, L. (2019, February 17). “Process of Data Visualization: Voyage from Data to Knowledge”. International Journal of Computer Sciences and Engineering, Volume 7(2), Pages 57–63. 10.26438/ijcse/v7i2.5763

45. Mr Krunal J Tailor, MV Mishra, Mr Gourav Purohit, Mr Chetan Jaiswal, Mr Nishant Vyas “A review paper on effects of vibration on mechanical properties and defect of similar and dissimilar weld joints in TIG
Predicting Infectious Disease Outbreaks with Machine Learning and Epidemiological Data

49. Thangaraja Arumugam, R. Arun, Sundarapandiyar Natarajan, Kiran Kumar Thoti, Shanthi P., Uday Kiran Kommuri, Unlocking the Power of Artificial Intelligence and Machine Learning in Transforming Marketing as We Know It, Data-Driven Intelligent Business Sustainability, Chapter 5, DOI: 10.4018/979-8-3693-0049-7

56. K. Rani, Dr. J.Udhayakumar, Dr. M.Uمامaheswari, Dr.R.Arun,(2023) “Factors Determining The Purchases of Clothing Products Through Social Media Advertisements in Coimbatore City”, European Chemical Bulleting,12(special issue 6), 4728–4737.

64. Thangaraja Arumugam, R. Arun, R. Anitha, Swerna P. L., Aruna R., Vimala Kadiresan, Advancing and Methodizing Artificial Intelligence (AI) and Socially Responsible Efforts in Real Estate Marketing, Data-Driven Intelligent Business Sustainability,Chapter 4, DOI: 10.4018/979-8-3693-0049-7

65. Sunil Bhatt, Aditya Singh, Gaurav Purohit, Anoo Dadhich “CFD analysis of vertical closed loop pulsating heat pipe with 10 turns” INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY, December 2018 | IJIRT | Volume 5 Issue 7 | ISSN: 2349-6002

66. Sunil Bhatt, Aditya Singh, Gaurav Purohit, Anoo Dadhich “Scope of CFD analysis in closed loop pulsating heat pipe Review Paper” INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY, December 2018 | IJIRT | Volume 5 Issue 7 | ISSN: 2349-6002

69. Prem Prakash Nagda, Dr. Vijayendra Singh Sankhala, Mr. Gaurav Purohit, Mr. Pankaj Phulara “EXPERIMENTAL INVESTIGATION AND OPTIMISATION IN EDM PROCESS OF AISI P20 TOOL STEEL” International Journal of Creative Research Thoughts (IJCRT) Volume 10, Issue 10 October 2022 | ISSN: 2320-2882

70. Siddharth Sodani, Gourav Purohit, Anoo Dadhich “NUMERICAL SIMULATION OF BOX TYPE SOLAR COOKER WITH EXPERIMENTAL INVESTIGATION” International Research Journal of Modernization in Engineering, Technology and Science, Volume:10, Issue:10, September-2022, e-ISSN: 2582-5208

