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Abstract 

 
The Extended Double star (EDS) parallel interconnection network with a 

network controller (NC) is a two-level hybrid structure. It is a large-scale 

network with the Double star as its basic building block. EDS network has 

degree (n!+n+1) and diameter ⌊ 3/2(𝑛 − 1) ⌋ + 2𝑘 where n and k are the two 

parameters denoting network dimension and the level of the network 

respectively. The extended double star network preserves all of the topological 

characteristics of the base or parent network, unlike the other derived networks. 

This large-scale network is suitable for voluminous computing and 

communications. The bipanconnectivity and hamiltonian properties of EDS are 

investigated. The Embedding of a guest graph into another host graph is a very 

important criteria and establishes the robustness of the later. For the current 

study of the topological relationship of EDS network with the two main classes 

of interconnections namely ring and mesh networks is attempted via embedding. 

Also, the EDS network satisfies the Hamiltonian properties. The upper limit of 

ring and mesh embedding is also estimated. 

Keywords: Embedding, Star, Ring, Mesh 

1. Introduction 
A parallel computing system consists of many processors working in tandem thanks to a shared memory 

space and interconnecting network, as well as the software that makes this possible. The connection 

network is the backbone of every parallel computing system. These days, massively parallel computing 

happens in numerous contexts, and "big data" is simply one of them. The big data notion places an 

emphasis on breaking down massive issues into manageable chunks that may then be tackled in parallel. 

In comparison to serial processing, it speeds up the time it takes to complete the task at hand. In this 

context, "multiple instructions and multiple data" (MIMD) computer architecture is the most well-

known concept. Since Parallel Interconnection Networks (PIN) form the backbone of all types of 

parallel computing systems, many academics are experimenting with the underlying architecture. Major 

PINs are Hypercube [1], Crossed Cube [6], a Star graph [8], Extended Hypercube [3], Extended Star 

[2], and Double star [11] and Extended Double star [] to mention a few. If you need a larger number of 

processing nodes than a star network can provide, the EDS topology is a viable option. To improve the 

speed of computers, scientists have studied parallel processing methods for the previous two decades. 

The proliferation of visually beautiful interconnection networks is a direct result of the rising tide of 

parallelism and the recent wave of computing advancements [4]. The processing power of an IN grows 

as more processors are connected to it. This type of computer system, called parallel computing, uses 

many programs to simultaneously carry out computations and message transport across processors. 

Large-scale parallel computing is now a standard component of every modern situation, including big 

data. MIMD computers are built with networks of connections. A machine may transfer data from one 

node to a target node with a minimum amount of delay in any PIN. Distributed shared memory models 

can have their capabilities greatly enhanced by a more efficient message transmission or communication 

method. Each transmission and reception of information within a communicative entity must be treated 

as a separate event. Instead of being stored in the communications channel, the messages are instead 

kept by the senders and receivers at the end nodes. However, a memory block used as a communication 

device can be viewed as storage space for all information while engaging in shared memory 
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communication. Applications that permit relatively independent functioning of processing units are 

often considered as candidates for message passing communication. Message passing in highly 

distributed computer systems has been a prospective study field for a long time. The notion of big data 

has also placed an emphasis on data exchange between different CPUs. A large data system's backbone 

is its parallel connectivity network. That’s why it's so important to prioritize speed when storing and 

retrieving data from a database for processing. In parallel systems where routing and broadcasting are 

quicker and is performed at a cheap cost, then those will be a better choice for implementation purposes 

[17]. An essential component of any distributed computing system is the parallel connection network. 

The time between each step should be minimized as much as possible. It should allow for several 

simultaneous transfers of this type. In addition, it should be affordable in relation to the cost of the 

balance of the equipment in the system. Topology, routing protocol, switching protocol, and flow 

control mechanism are all characteristics that set a network apart. The most well-liked types of PIN are 

the hypercube and the star graph. The term "Big data" has become a popular catchphrase in recent years, 

and it has received a lot of media coverage as a result. Interconnection network continues to be mostly 

accepted to become the best reasonable type of parallel computing. This particular present effort is 

inspired form Extended Double Star (EDS) network [13]. A Extended double star system includes two 

star graphs together with a single Network Controller (NC), each one of (2𝑛!)𝑘 +
(2𝑛!)𝑘−1

2𝑛!−1
 nodes. Every 

node in an EDS has the same degree (n!+n+1). The embedding characteristics of interconnection 

networks play an important role, as they facilitate the transmission of messages in the event of faulty 

nodes. Acquiring a spanning broadcasting tree in the network is an integral part of the broadcasting 

process. The level of this particular spanning tree is proportional to the diameter of the system; 

therefore, it reveals the entire message transmission time from one node to the rest. Additionally, the 

robustness of the host system is also exposed through the embedding of many additional networks such 

as rings and meshes [10]. Using this embedding, our goal is to create a more robust and efficient 

message-passing system for processing of large amounts of data in parallel [5]. 

The remaining sections of the paper are organized as follows: The second section provides the definition 

and topological properties of EDS network. The third section describes the bipan connectivity and 

Hamiltonian property of the EDS network. The fourth section explains the embedding characteristics 

of an Extended Double star network. It explains the ring and mesh embedding of current EDS network. 

Finally, Section 5 brings the conclusion of the current paper. 

Definition and Topological Properties of EDS 

The EDS is a hierarchical topology with one NC and a fundamental module that is a DS graph, allowing 

the processing element to zero in on computation alone [11]. The EDS topology may be characterized 

by two parameters, n and k, where n is the DS dimension and k is the NC level, respectively. The 

movement from the outer ring to the inner ring and vice versa takes place through the leaf edge. Here, 

we use star notation to symbolize node addressing for the fundamental module. The star notation is the 

permutation of n bitstrings along with a binary bit for designating the ring structure. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Extended Double Star of Dimension Three, EDS (3,1) 

The different topological parameters of the EDS graph are discussed in detail using graph theoretical 

notations in [13]. The total number of computing nodes of EDS is 𝑃 =  (2𝑛!)𝑘+
(2𝑛!)𝑘−1

2(𝑛!)−1
. The degree of 
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EDS network is (𝑛!+𝑛+1).The total number of edges in EDS network is E = 2𝑛(𝑛−1) + 𝑛! 
(𝟐𝒏!)𝒌−𝟏

𝟐(𝒏!)−𝟏
. The 

diameter of the EDS network is ⌊
𝟑

𝟐
 (𝑛 − 1) ⌋ + 2𝑘. The cost of computation in the EDS (n, k) is given by 

[⌊ 
3

2
(n −  1) ⌋  +  2k ]× (𝑛! + 𝑛 + 1) . 

Hamiltonian Property of EDS Network 

Bipartite Property 

In classical graph theory, the vertex V of a bipartite graph can be split into two disjoint and independent 

subsets V1and V2. Then there is an edge set 𝐸′ subset of the edge set Econnecting a vertex in V1 to one 

in V2. The vertex sets V1and V2are resulted from the vertex set V of the graph by removing 𝐸′. 

Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.  

Theorem1: EDS Network is bipartite. 

Proof: In EDS apart from NC the PES connected to both the inner and outer rings can be split into two 

disjoint and independent sets of vertices V1 andV2 respectively. The sets are made distinct by removing 

the links from outer ring to inner ring. Here V1 ∩ V2 = Ø. Also, in EDS network there are no odd-length 

cycles as each ring contains n!number of processing nodes. As V1 and V2 node sets belong to the outer 

and inner rings respectively, hence all removed edges are from V1 to V2 satisfying the bipartite 

condition. This implies that EDS is bipartite. (Proved) 

Following is a simple algorithm to find out EDS graph is Bipartite 

Algorithm for Bipartite EDS (n, k) 

In this Bipartite EDS (n, k) algorithm there are two parameter n and k, where n represent the network 

dimension and k represent the level of NC. The address of the computing node is denoted asV(x, y), 

where thex designates level of NC and position of NC connected to the outer ring andytypify the cluster 

address and node position inside the cluster. 

Algorithm BPEDS (V, E, n, k) 

Notations 

V: Set of vertices 

E: Set of edges 

n: Dimension of DS 

k: Level of NC 

X: Denotes the level of NC and position of NC in outer ring 

Y: Cluster address and node position in the cluster 

𝐸′: Set of edges removed from original topology 

𝑉1: Set of vertices in the outer ring connected to NC 

𝑉2: Set of vertices in the inner ring 

1. Start 

2. While mod(V)>0 

{ 

3. Scan v<x,y>for x address bits 

4. (add NC to V1) 

5. If the node address bits is starting with 1 then Put into set V1 

6. Else if node address bits starting with 0 Put into set V2. 

7. Add the edge in 𝐸′ 

8. Scan the neighbor PE 

9. ‖𝑉 ∥= ‖𝑉 ∥-1 

} 
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10. If V1 ∩ V2 = Ø and mod(V1) =k+ mod (V2) then Return “EDS is Bipartite” 

Else Return “EDS is not Bipartite” 

11. Stop 

Illustration 

In the Fig. 2 the removed edges are marked with red ticks depicting that EDS(3,1) is bipartite. The 

nodes of inner ring (node address bits starting with 0) are not connected to the NC and hence belong to 

node set V2. The set of nodes with starting address bit 1 in outer ring and the NC belong to set V1. As 

the base module is bipartite, hence the entire recursive structure EDS(n,k) will behave in the same 

manner. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 2: Bipartite Condition of Base Module EDS (3,1) 

Hamiltonian Laceablility 

A connected bipartite graph is called Hamilton-laceable, if it hasV1- V2 Hamiltonian path for all pairs 

of vertices v1and v2, where v1belongs to one set of the bipartition, and v2to the other. 

Theorem 2: EDS is Hamiltonian-laceable 

Proof: From Th.1, it’s is clear that the EDS is a connected bipartite graph. It has even number of nodes. 

Also, EDS has V1– V2Hamiltonian path for all pairs of vertices v1and v2, where v1 belongs to one set of 

the bipartition, and v2 to the other. In the EDS network with the help of NC (V1 U V2, 𝐸′) is possible 

where 𝐸′ contains those edges that are removed to construct V1and V2. Hence EDS is Hamiltonian-

lacerable. (Proved) 

From Theorem 1 and 2 it can be very well observed that a Hamiltonian path will exist in the EDS 

topology. A Hamiltonian path is a path between two vertices of a graph where each vertex is visited 

exactly once. It is also known as a Hamilton path. In a graph, a Hamiltonian cycle can be viewed as a 

closed loop where the beginning and endpoints of the path are adjacent. 

Theorem3: Extended Double Star EDS(n,k) contains a Hamiltonian cycle. 

Proof: According to the improved degree-based condition for Hamiltonicityin a graph is given by 

Mehedy, Kamrul and Kaykobad in 2007 as, for p number of nodes, the graph must have at least 
𝑝

4
 edges. 

In EDS(n,k) topology, the count of edges (E) = 2𝑛(𝑛 − 1) + 𝑛! (
(2𝑛!)𝑘−1

2𝑛!−1
) 

In EDS(n,k) topology, the count of nodes (p) = (2𝑛!)𝑘+
(2𝑛!)𝑘−1

2(𝑛!)−1
 

If the total edges of EDS(n,k) are more than 
𝑝

4
 for (p > 1) then the Hamiltonian cycle must be existing. 

Now, by using mathematical induction method we have to proof that: 
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𝑆𝑛,𝑘: 2𝑛(𝑛 − 1) + 𝑛! (
(2𝑛!)𝑘−1

2𝑛!−1
)>

(2𝑛!)𝑘+
(2𝑛!)𝑘−1

2(𝑛!)−1

4
 is true. (for n ≥ 3, k = 1) 

Base Case (show that 𝑆𝑛,𝑘 is true):  

For, 𝑆3,1 : 2 × 3 (3 − 1) + 3! (
(2×3!)1−1

2×3!−1
)>

(2×3!)1+
(2×3!)1−1

2(3!)−1

4
 

⇒𝑆3,1 : (12 + 1) >
13

4
 

⇒𝑆3,1 : 13 > 4  

So, the base case 𝑆3,1 is true.  

For inductive hypothesis, assume that 𝑆𝑡 ,𝑟 is true for t ≥ 3 & r = 1 

     𝑆𝑡,𝑟: 2𝑡(𝑡 − 1) + 𝑡! (
(2𝑡!)𝑟−1

2𝑡!−1
)>

(2𝑡!)𝑟+
(2𝑡!)𝑟−1

2(𝑡!)−1

4
 is true. (for t ≥ 3, r = 1) 

⇒ 𝑆𝑡,𝑟: 2𝑡2 - 2𝑡 + 𝑡! >
2𝑡! + 1

4
 is true. (for, r = 1) 

We have to show that, 𝑆𝑡 ,𝑟 is true follows that 𝑆𝑡+1 ,𝑟+1 is true. 

 Consider, 𝑆𝑡+1 ,𝑟+1 =  2(𝑡 + 1)(𝑡 + 1 − 1) + (𝑡 + 1)! (
{2(𝑡+1)!}𝑟+1−1

2(𝑡+1)!−1
) 

 = 2𝑡(𝑡 + 1) + (𝑡 + 1)! (
{2(𝑡+1)!}2−1

2(𝑡+1)!−1
) (for, r = 1) 

 = 2𝑡2 + 2𝑡 + (𝑡 + 1)! {2(t + 1)!}2 + 1 

 = 2𝑡2 + 2𝑡 + 4{(t + 1)!}3 + 1 

 = 2𝑡2 + 2𝑡 + 4{(𝑡 + 1)!}3 + 1 + 2𝑡 - 2𝑡 + 𝑡! - 𝑡! 

 = 2𝑡2 - 2𝑡 + 𝑡! +2𝑡 + 4{(𝑡 + 1)!}3 + 1 + 2𝑡 - 𝑡!  

>
2𝑡!+1

4
 + 4𝑡 - 𝑡! + 4{(𝑡 + 1)!}3 + 1  

>
2𝑡!+1

4
+  4[𝑡 + {(𝑡 + 1)!}3]  −  𝑡! + 1 

>
2(𝑡+1)!2+ 2(𝑡+1)! + 1 

4
 

>
2(𝑡+1)!{(𝑡+1)!+1} + 1 

4
 (R.H.S) 

Therefore, 𝑆𝑡 ,𝑟 is true follows that 𝑆𝑡+1 ,𝑟+1 is true. 

 

So, by mathematical induction method, it can be assumed that 

𝑆𝑛,𝑘: 2𝑛(𝑛 − 1) + 𝑛! (
(2𝑛!)𝑘−1

2𝑛!−1
)>

(2𝑛!)𝑘+
(2𝑛!)𝑘−1

2(𝑛!)−1

4
 is true. (for n ≥ 3, k = 1)  

In this way we can prove that,  

𝑆𝑛,𝑘: 2𝑛(𝑛 − 1) + 𝑛! (
(2𝑛!)𝑘−1

2𝑛!−1
)>

(2𝑛!)𝑘+
(2𝑛!)𝑘−1

2(𝑛!)−1

4
 is true. (for n ≥ 3, k = 2)  

 𝑆𝑛,𝑘: 2𝑛(𝑛 − 1) + 𝑛! (
(2𝑛!)𝑘−1

2𝑛!−1
)>

(2𝑛!)𝑘+
(2𝑛!)𝑘−1

2(𝑛!)−1

4
 is true. (for n ≥ 3, k = 3)  

 .  

 . . ….. & so, on  

Therefore, 𝑆𝑛,𝑘: 2𝑛(𝑛 − 1) + 𝑛! (
(2𝑛!)𝑘−1

2𝑛!−1
)>

(2𝑛!)𝑘+
(2𝑛!)𝑘−1

2(𝑛!)−1

4
 is true. (for n ≥ 3, k ≥ 2) 

This implied that, Extended Double star EDS(n,k) contains a Hamiltonian cycle. (Proved) 

Embedding 

Graph embedding has been increasingly essential in a range of computer architecture and machine 

learning techniques in recent years. We perform multiple tasks, including clustering, principal 
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component analysis (PCA), classification, etc., in a very robust manner using the nodes, edges and other 

components of the graph embedding. Embedding is a most commonly used machine learning technique 

that involves with the representation of a complex object such as texts, images, as well as graphs into a 

vector with a reduced number of features as compared to the dimension of the dataset of billions 

number of nodes in a graph, while still sustaining the most important information about them.  

Let, 𝐺 is a guest and 𝐻 is a host finite graphs of 𝑛 vertices, where 𝑉(𝐺)and 𝑉(𝐻) denote the vertex set 

of 𝐺 𝑎𝑛𝑑𝐻 and 𝐸(𝐺) and 𝐸(𝐻) denote the edge set of 𝐺 𝑎𝑛𝑑𝐻 respectively. Then an embedding function𝑓 

of 𝐺 into 𝐻 is defined as: 

1.   𝑓 is a one-to-one mapping from 𝑉(𝐺) → 𝑉(𝐻). 

2. 𝑃𝑓 is a one-to-one mapping from 𝐸(𝐺) 𝑡𝑜 𝑃𝑓(𝑓(𝑢), 𝑓(𝜈)) ∶ 𝑃𝑓(𝑓(𝑢), 𝑓(𝑣)) is a path in 𝐻 between 𝑓(𝑢) 

and 𝑓(𝑣) for {(𝑢, 𝜈) ∈ 𝐸(𝐺)} . 

From the definition it is clear that the graph embedding assigns a fixed-length vector representation to 

each entity (typically nodes) in the graph. These embedding preserve the graph’s topology, which are 

lower dimensional representation of the graph. Graph embedding allows for the efficient simulation of 

one network architecture through another. Embedding is very essential part of computer science 

because of we can easily modified an algorithm for graph H, which is made for graph G. Dilation, 

congestion, and expansion are among the parameters related to graph embedding. The dilation of an 

embedding is defined as the maximum length of such paths that can be taken over all source edges. 

Link congestion provides the most of the inter-process communication source channels that can be 

mapped to a single physical host link. To reduce contention on links or router buffers, link congestion 

should be minimized. Node congestion defines the maximum number of inter-process channels that can 

pass through a single host router. Expansion is the measure of processor utilization. It is defined as the 

ratio of the vertex size of host to guest graph. 

Ring Embedding in EDS 

The EDS is an interconnection network that consists oftwo-star networks linked to a single network 

controller (NC). Previously, studies are made how different topologies can be embedded as binary trees, 

meshes, rings of stars, in CQs, and SCQs. Through this method, we are able to acquire ring properties 

in EDS analogous to a star and double star network. A ring is usually used to describe a path where the 

starting and ending nodes are the same and same node cannot be travelled more than once. The 

Hamiltonian cycle has already been derived from an EDS network. In below, after passing through each 

node of the EDS network at least once, the route is finished when it reaches the node from which it 

initially set off. 

Lemma 1: The embedding of ring is possible in EDS (3,1) and the upper bound on the size of the ring is 

13.  

Proof: By the use of gray code, we must encode numbers so that the only difference between them is a 

single digit. Frequently, the term Gray code refers to a "reflected" code, or more precisely, the binary 

reflected Gray code. Developing an n-bit Gray code in EDS: 

EDS (3,1) network consist of two-star graphs together with single Network Controller. A ring with 12 

nodes (R1 through R12) and one NC is shown in Fig.3. The addresses of the nodes in the EDS graph 

are given below. 

R1= (1,123)   R2= (1,132) R3= (1,312)  

R4= (1,321) R5= (1,231)   R6= (1,213) 

R7= (0,213) R8= (0,231) R9= (0,321) 

R10= (0,312) R11= (0,132) R12= (0,123) 

R13= NC (Network Controller) 

https://jazindia.com/
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Fig. 3. Embedding of Ring Topology in EDS (3,1) 

In EDS (3,1) network 12 edges and 1 NC are to be considered. Therefore, 12+1= 13 number of edges 

needed to embed a ring in EDS (3,1) network shown in the Fig.3. (Proved) 

Lemma 2: The upper bound of the ring sizeembedded in EDS (3,2) network is 169. 

Proof: In order to embed a ring in EDS (3,2), all nodes will be covered just once and the beginning and 

ending points being the same. Right after travelling through a cluster, depending upon the y part of the 

node address, next star graph neighbor will be chosen as the next subsequent related clusteras shown in 

Fig.4 below. The EDS (3,2) network consists of twelve numbers of clusters connected in star manner to 

the main basic block DS network in inner and outer ring as shown in Fig.4 and a single Network 

Controller at level 0. At level one, there are 2n! numbers of clusters and each cluster has 13 nodes (12 

computing nodes and one NC). To embed a ring in each network, 13 edges are needed. Therefore, total 

13 × 12 = 156 number of edges are needed to embed a ring. At level zero, the EDS (3,2) network consists 

of a DS network with a single NC, which has 13 nodes and it required total 13 edges to embed a ring. 

So, maximum 156 + 13 = 169 edges are needed to embed a ring in theEDS(3,2) network. (Proved) 

 

Fig. 4. Embedding of Ring topology in EDS (3,2) 

Lemma 3: The upper bound on the size of the ring possible in EDS (4,1) network topology is 49. 

Proof: EDS (4,1) network consists of four number of double star networks together with single Network 

Controller. Each double star network needed 11 number of edges to embed a ring in it as shown in the 

Fig.5. So, there are total 11 × 4 = 44 number of edges are required to embed a ring in four different DS 

networks. Furthermore, each DS networks are connected with each other in star manner. Therefore, 

again five number of edges are needed to embed a complete ring shown in the Fig.5. So, maximum 44 

+ 5 = 49 edges are needed to embed a ring in an EDS (4,1) network. (Proved) 
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Fig. 5. Embedding of Ring topology in EDS (4,1) 

Lemma 4: The maximum size of the ring in EDS (4,2) network is 673.  

Proof:EDS(4,2) network consists of four number of double star networks with a single Network 

Controller. Each double star networks consists of twelve numbers of clusters connecting in star manner 

shown in the Fig.6. At level one, each clusters have 13 nodes, which required total 13 number of edges 

to embed a ring and there is total four number of independent DS networks shown in Fig.6. So, there 

are total (13 × 12) × 4 = 624 number of edges are needed to embed ring. At level zero, each double star 

network required 11 number of edges to embed a ring in it as shown in the Fig.6. So, there are total 11 

× 4 = 44 number of edges are required. Furthermore, each DS networks are connected with each other 

in star manner. So, again five number of edges are required to embed a complete ring shown in the 

Fig.6. Therefore, at level zero the network required total 44 + 5 = 49 edges to embed a ring. So, 

maximum 624 + 49 = 673 edges are needed to embed a ring in EDS (4,2) network. (Proved) 
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Fig. 6. Embedding of Ring topology in EDS (4,2) 

Theorem-1: The upper bound on the ring size embedded in EDS(n,k) is (2n! + 1) + 52 (k-1) (n) (n-

1) (n-2) …3. 

Proof:The Extended Double Star structurecontains   (2𝑛!)𝑘 +
(2𝑛!)𝑘−1

(2𝑛)!−1
 number of computing nodes. To 

calculate the total sum of connecting edges in EDS(n,k) to embed a ring, a comparison is being made 

from the above stated four ring embeddings. From Lemma-1: In EDS (3,1) network, the maximum size 

of the ring is 13. At level zero, the EDS (3,1) network has 13 edges, which can be written as (2n! + 1) 

edges. Therefore, we can say that in general the EDS (3,1) network has (2n! + 1) + (k-1) edges. Where, 

(k-1) is the highest level of NC in EDS(n,k)network. From Lemma-2: In EDS(3,2) network, the maximum 

size of the ring is 169. At level zero, the EDS (3,2) network has 13 edges, which can be written as (2n! + 

1) edges. At level one, the EDS (3,2) network has (13 × 12) edges, which can be written as 52 × n edges. 

Therefore, we can say that in general the network has (2n! + 1) + (k-1) × 52 × n edges. Where, (k-1) is 

the highest level of NC in EDS(n,k) network. From Lemma-3: In EDS (4,1) network, the maximum size of 

the ring is 49. At level zero, the EDS (4,1) network has 49 edges, which can be written as (2n! + 1) edges. 

Therefore, we can say in general the network has (2n! + 1) + (k-1) edges. Where, (k-1) is the highest 

level of NC in EDS(n,k) network. From Lemma-4: In EDS (4,2) network, the maximum size of the ring is 

673. At level zero, the EDS (4,2) network has 49 edges, which can be written as (2n! + 1) edges. At level 

one, the EDS (4,2) network has [(13 × 12) × 4] edges, which can be written as 52 × n × (n-1) edges.  

Therefore, we can say in general the network has (2n! + 1) + (k-1) × 52 × n × (n-1) edges, where, (k-1) 

is the highest level of NC in the EDS(n,k) network. After considering all of the above four cases, to get a 

generalized equation for EDS(n,k), the upper bound on the size of the ring contained in EDS(n,k) structure 

will be (2n! + 1) + 52 (k-1) (n) (n-1) (n-2) ….3. (Proved) 

From the Theorem 1 it is clear that the dilation and expansion of ring embedding in EDS topology is 

one. Also, the ring embedding has unit link and node congestion.  

Mesh Embedding in EDS 

Mesh network is nothing but more than connect one processor to four other processors. In mesh 

network, there is a connection between the processors in the last column and the first processor of the 

next row. There should be a connection between the processors in the bottom right and top left corners.  

Lemma 5: The upper bound on the number of 2D disjoint mesh embedding in EDS (3,1) is 6. 
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Proof: The EDS (3,1) topology consists of two sets of star graphs organized into two rings with single 

Network Controller connected to the outer rings. The links connecting the inner ring with the outer ring 

encompass six numbers of two dimensional meshes as shown in Fig.7 (a). Here the meshes shown in 

figure are numbered from 1 to 6 as shown in Fig. 7 (b). Hence, maximum 6 numbers of 2D meshes are 

contained in EDS (3,1). (Proved) 

 

Fig. 7. (a) Mesh Embedding in EDS (3,1), (b) Six number of 2D Meshes in EDS (3,1) 

Lemma 6: The highest number of meshes contained in the EDS (3,2) topology is determined to be 78.  

Proof: The EDS (3,2) network consists of a double star network with a single Network Controller and the 

double star network has twelve numbers of clusters connecting in star manner shown in Fig.8. At level 

one, the network has twelve number of clusters. Each clusters creates 6 number of meshes. Therefore, 

total (12 × 6) = 72 number of meshes are created by the network. At level zero, the EDS (3,2) network 

consists of single DS network with a NC, which embed with six number of meshes. So, maximum 72 

+ 6 = 78 meshes are possible in EDS (3,2) .  

(proved)  

 

Fig. 8. Embedding of Mesh in EDS (3,2) 

Lemma 7: The highest number of meshes contained in the EDS (4,1) topology is determined to be 36.  

Proof: EDS (4,1) network consists of four double star networks linked to a single Network Controller 

and each double star networks embedded with six number of meshes. So, total 6 × 4 = 24 number of 

meshes are created by the DS networks. Again, all of the four double star networks create two sets of 

meshes with each other shown in the Fig.9. Therefore, the EDS network creates twelve number of 

meshes. So, maximum 24 + 12 = 36 meshes number of meshes are possible in EDS (4,1). (Proved) 
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Fig. 9. Embedding of Mesh in EDS (4,1) 

Lemma 8: The upper bound on the mesh embedding into the EDS (4,2) topology is determined to be 324. 

Proof: EDS (4,2) network consists of four number of double star networks with a single Network 

Controller and each double star networks have twelve numbers of clusters connecting in star manner 

shown in the Fig.10. At level one, each clusters creates six meshes and there are total (12 × 4) number 

of clusters. So, the maximum 12 × 4 × 6 = 288 number of meshes possible at level one. At level zero, 

EDS (4,2) network consists of four number of double star networks which are connected to a single NC. 

Each double star network embedded with six number of meshes. So, total 6 × 4 = 24 number of meshes 

are created by the DS networks. Then, all of the four double star networks create two sets of meshes 

with each other shown in the Fig.11 and again are created 12 number of meshes. Therefore, at level 

zero maximum 24 + 12 = 36 meshes number of meshes are possible. So, maximum 288 + 36 = 324 

number of meshes possible in EDS (4,2) network. (Proved) 

 

Fig. 10. Mesh Embedding in EDS (4,2) 
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Theorem-2: The total number of meshes that can be embedded in EDS(n,k) is 
n!(n−1)

2
 + 24 (k-1) (n) (n- 1) 

(n- 2)….3 . 

Proof: The EDS(n,k) is a n dimensional network of k levels. The EDS network has EDS (3,1) as the basic 

module and the network has six number of meshes. To calculate the total number of meshes in EDS(n,k), 

we have to compare the above four mesh embedding of extended double star network. From lemma-5: 

In EDS (3,1) network, the maximum size of the meshes are six. At level zero, the EDS (3,1) network has 

six meshes, which can be written as 
𝑛!(𝑛−1)

2
 meshes. Therefore, we can say that in general the network 

has 
𝑛!(𝑛−1)

2
+ (k-1) meshes. Where, (k-1) is the highest level of NC in EDS(n,k) network. From lemma-6: 

In EDS (3,2) network, the maximum size of the meshes are 78. At level zero, the EDS (3,2) network has six 

meshes, which can be written as 
𝑛!(𝑛−1)

2
 meshes. At level one, the EDS (3,2) network has (12 × 6) meshes, 

which can be written as 24 × n meshes. Therefore, we can say that in general the network has 
𝑛!(𝑛−1)

2
 + 

(k-1) × 24 × n meshes. From lemma-7: In EDS (4,1) network, the maximum size of the meshes are 36. At 

level zero, the EDS (4,1) network has 36 meshes, which can be written as 
𝑛!(𝑛−1)

2
 meshes. Therefore, we 

can say that in the network has 
𝑛!(𝑛−1)

2
 + (k-1) meshes. From lemma-8: In EDS (4,2) network, the maximum 

size of the meshes is 324. At level zero, the EDS (4,2) network has 36 meshes, which can be written as 
𝑛!(𝑛−1)

2
 meshes. At level one, the EDS (4,2) network has [(12 × 6) × 4] meshes, which can be written as 24 

× n × (n-1) meshes. Therefore, we can say that in general the network has 
𝑛!(𝑛−1)

2
 + (k-1) × 24 × n × (n-

1) meshes. After considering all of the above four cases, to get a generalized equation for EDS(n,k), The 

total number of meshes in EDS(n,k) network will be, 
n!(n−1)

2
 +24(k-1)(n)(n-1)(n-2)…3 . (Proved) 

By inspecting the Lemmas and Theorem 2 it is clear that the dilation, congestion and expansion of mesh 

embedding in the EDS topology is unity. 

4. Conclusion 

In this current study, the Extended Double Star network topology is a unique interconnection system 

that can be suitable for implementing large-scale parallel computing. As compared to previous 

networks, this particular EDS network has significantly better qualities such as node degree, diameter, 

cost, traffic density, and robustness. The architecture is bipartite and Hamiltonian lacerable. Embedding 

of both the Ring and Mesh topologies can effortlessly done into the Extended Double star network. The 

longest ring that can be realized in the EDS is estimated. Thus, it is concluded that the EDS contains 

cycles greater than 6 as subgraphs. This research also finds an upper bound on the number of disjoint 

meshes that can be embedded into EDS topology. The extended double star network conserves all of 

the topological features of the original star network. The inclusion of the controller nodes results in 

faster and economical message passing feature and it will be beneficial for the parallel computing 

systems. The inner rings computing nodes can also be treated as back up nodes can make the topology 

more fault tolerant. In addition to that the inner and outer ring design can be a candidate for 

implementing distributed file structure with map and reduce framework of parallel systems which 

strongly focuses on scope for some future research. The graph theoretical results of EDS topology 

obtained here claim that this hierarchical architecture can be very influential from communication and 

computation point of view in the Big data scenario. 
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