
Shikha Sharma*, Ajay Khunteta2, Dinesh Goyal3

1Department of Computer Science and Engineering, Poornima University, Jaipur
2Department of Computer Science and Engineering, Poornima Institute of Engineering & Technology, Jaipur

*Corresponding author’s: Shikha Sharma

Abstract
The burgeoning field of ethology necessitates efficient tools for analyzing extensive video recordings of animal behavior, as manually sifting through hours of footage is both time-consuming and susceptible to observer bias. Here we present an innovative deep learning framework tailored for summarizing animal behavior videos, aiming to distill lengthy recordings into concise, informative segments. Leveraging the latest advancements in hierarchical video summarization, our approach employs a combination of Convolutional Neural Networks (CNNs) and Transformer models to extract and understand complex spatial-temporal patterns inherent in animal movements and interactions. The model is designed to recognize and prioritize key behavioral events, ensuring the retention of critical moments in the summarized output. Additionally, an attention mechanism is incorporated to adaptively focus on salient features, enhancing the model’s capability to discern subtle yet significant behavioral nuances. We assess our framework on a range of datasets containing different species and behavioral situations, and find that it outperforms current state-of-the-art techniques in terms of accuracy, coherence, and informativeness of the generated summaries. In addition to providing a consistent, objective method of analyzing animal behavior, DeepSum dramatically reduces the amount of manual labor needed for behavioral analysis, opening the door for advancements in ethological research and wildlife conservation.

Keywords: Animal Behavior Analysis, Zoology, Ethological Research, Wildlife Monitoring, Automated Video Analysis, Behavioral Studies.

1. Introduction
An important area of biology that sheds light on the complexities of animal interactions, ecology, and evolution is the study of animal behavior, or ethology. When capturing and analyzing natural animal behaviors in a variety of settings—from controlled laboratory surroundings to the wild—ethologists mainly rely on video recordings. But because to technological advancements, researchers can now record long stretches of video, which can result in hundreds of hours of video data. Not only is it impossible to manually review such massive amounts of data, but it also raises the risk of inconsistent data interpretation and observer bias. This emphasizes how urgently we need automated technologies that can reliably and efficiently assess animal behavior captured on camera.

Video summarization techniques have emerged as a promising solution to this challenge, aiming to condense lengthy videos into shorter, informative segments that retain the essence of the original content. In recent years, deep learning-based approaches have revolutionized the field of video summarization, offering substantial improvements over traditional methods that relied on handcrafted features and heuristics. In particular, the adoption of Convolutional Neural Networks (CNNs) and Transformer models has enabled the extraction and understanding of complex spatial-temporal patterns in video data, proving to be exceptionally beneficial in capturing the nuances of animal behavior [1][2].

Despite the progress, most existing video summarization methods are generic and do not cater specifically to the unique requirements of ethological studies. Animal behavior videos often exhibit hierarchical structures, with meaningful behavior patterns spanning across different temporal scales. Recognizing this, our work introduces "DeepSum", a specialized deep learning framework designed for summarizing animal behavior videos. DeepSum leverages hierarchical video summarization

techniques, integrating CNNs and Transformer models with attention mechanisms to adaptively focus on significant behavioral events while preserving the contextual integrity of the original footage.

In this paper, we present the architecture and workings of DeepSum, detailing how it efficiently processes and summarizes animal behavior videos. We evaluate its performance on diverse datasets, showcasing its superiority over existing methods in terms of accuracy, coherence, and the informativeness of generated summaries. Our work not only contributes to the field of video summarization but also holds significant implications for ethology, offering a robust, automated tool for behavioral analysis that ensures objectivity and consistency in interpreting animal interactions.

2. Literature Review

The area of video summarization has witnessed considerable advancements, giving rise to a myriad of techniques dedicated to transforming lengthy videos into abbreviated versions that retain essential content. This review of literature traces the progression of methodologies in video summarization, with a special focus on the latest innovations in deep learning and their application to analyzing animal behavior.

1. Early Video Summarization Techniques: Initially, video summarization was dominated by methods that utilized manually crafted features and rule-based strategies. Common practices included identifying shot boundaries, selecting representative keyframes, and grouping similar frames [3]. These early techniques were foundational; however, they often fell short in interpreting the videos' semantic elements and struggled with varying types of video content [4].

2. Deep Learning Enhancements: The advent of deep learning marked a transformative phase in video summarization. Techniques began to employ Convolutional Neural Networks (CNNs) to derive complex, layered features from video frames [5]. The integration of Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks further improved the ability to understand temporal relationships across frames [6][7]. This shift resulted in summaries that were not only more cohesive but also richer in semantic meaning.

3. Introduction of Attention and Transformers: The adoption of attention mechanisms has refined the video summarization process, enabling models to concentrate on critical parts of the video data, which results in more accurate summaries [8]. The transformer model, with its inherent self-attention capabilities, has played a crucial role, modeling intricate temporal dynamics and relationships within video content.

4. Applications in Ethology: The field of ethology has recently started to tap into the capabilities of video summarization, especially those powered by deep learning, to sift through extensive animal behavior footage. The goal is to distill valuable behavioral patterns and interactions [9]. Yet, adapting video summarization models to ethological data presents unique challenges, including inconsistent lighting, camera movement, and subtle behavioral indicators.

5. Hierarchical Approaches in Video Summarization: Acknowledging the naturally occurring hierarchical structures in videos, especially in animal behavior datasets, newer approaches propose hierarchical video summarization models. These models are designed to understand and encapsulate multi-tiered temporal relationships, making them exceptionally well-suited for summarizing intricate behavioral sequences observed in animals [10][11].

In conclusion, the journey of video summarization from rule-based to deep learning-driven methodologies has been remarkable. Applying these advanced techniques to the domain of ethology opens new horizons for automating and enriching the study of animal behavior. The continued development and adoption of hierarchical video summarization models represent a particularly exciting and promising frontier in this interdisciplinary application.

Applications of Video Summarization in Zoology: In the discipline of zoology, video summarization technology is proven to be a useful tool that improves the efficiency of observing and comprehending animal behavior and interactions. This technology offers significant benefits across multiple disciplines and has a broad variety of applications.

1. Analyzing Animal Behavior: It allows one to observe and investigate how animals act in both natural and controlled environments. This helps one recognize and understand eating habits, mating rituals, and behavioral patterns that may not be entirely apparent in other situations [9].

Available online at: https://jazindia.com
2. Monitoring Animal Populations: Video summaries are very helpful, especially for species that are hard to find. It is particularly useful for tracking animal migrations and populations in remote or challenging-to-reach areas [12].

3. Supporting Conservation Efforts: Researchers can identify potential threats to wildlife, such as illegal hunting or habitat destruction, and take appropriate conservation actions by analyzing video footage from natural habitats [13][14].

4. Conducting Ethology Research: By enabling the controlled study of animal behavior, video summarization enables ethologists to better comprehend the natural behavioral patterns of various animals [15].

5. Producing Wildlife Documentaries: By streamlining the process, producers and editors can locate and utilize the most powerful video more quickly [16].

6. Developing Educational Materials: Summarized video content is a great teaching tool that gives students and the general public succinct, interesting information about a variety of species and their habits [17].

7. Monitoring Animal Health: Veterinarians and researchers can more rapidly spot any possible health problems or symptoms of distress in zoological parks and wildlife reserves by using video summarization, which aids in the ongoing monitoring of animal health [18].

8. Measuring Biodiversity: Using technology, one may determine an area's biodiversity and get insight into the range of species found there and their interactions with one another [19].

9. Public Engagement: By using condensed video information, zoos and wildlife reserves may better educate and raise public awareness about various species and the need for conservation [20].

In conclusion, video summarizing in zoology is essential for improving research, teaching, and animal conservation in addition to improving the effectiveness of evaluating large amounts of video data.

3. Materials And Methods

In this section, we elaborate on the proposed “DeepSum” framework, a deep learning-based hierarchical video summarization model specifically tailored for animal behavior analysis. The methodology is divided into several key components, each playing a vital role in generating concise yet informative video summaries.

1. Initial Data Handling:
 - Segmenting Videos: The initial video footage is split into concise, distinct sections, ensuring each captures a continuous stream of behavior or activity. This segmentation lays the groundwork for subsequent analysis.
 - Key Frame Isolation and Feature Transformation: Select frames are isolated from each video segment, and their features are transformed using a pre-trained Convolutional Neural Network (CNN), converting the raw visual data into a more complex feature space.

2. Analyzing Temporal Relationships:
 - Applying Transformer Encoder: The series of transformed frames are processed through a Transformer encoder, which discerns the temporal relationships and interactions across different video segments. This is crucial for comprehending the development and patterns of animal behavior across time.

3. Implementing Hierarchical Attention:
 - Focusing on Significant Frames: An attention mechanism hones in on frames within each segment that capture key behavioral events, ensuring these pivotal moments are emphasized in the summarization.
 - Weighting Segment Importance: Another level of attention assesses the entire video, assigning weights to various segments based on their relevance and context. This hierarchical approach guarantees a balanced and thorough representation of animal behavior in the final summary.

4. Creating the Summary:
• Choosing Relevant Segments: Segments are selected based on their attention weights, with the number chosen reflecting the intended length of the summary.

• Refining the Summary: These segments are then compiled, and additional refinement, such as smoothing transitions between segments, is performed to ensure the summary is cohesive.

5. Refinement and Optimization:

• Assessing the Summary: The generated video summary undergoes evaluation through quantitative F1 score metrics and expert opinions from ethology specialists.

• Tuning the Model: Feedback from the evaluation informs adjustments to the model, particularly in the attention mechanisms, to enhance summarization accuracy.

6. Implementing the Tool:

• Integrating into Ethological Practices: By automating the behavioral analysis and video summarization processes, the improved "DeepSum" model joins the ethologists' standard toolkit.

• Putting in Place a Feedback System: An ongoing feedback loop is established so that ethologists can assess the quality of the summaries and help to improve the model going forward.

Our framework offers a reliable method for summarizing videos of animal behavior by combining deep learning techniques, hierarchical attention mechanisms, and domain-specific optimizations. The model guarantees that the summaries that are generated are highly relevant to ethological studies, informative, and coherent by emphasizing both the visual content and the temporal progression of animal behavior.

Design of DeepSum Framework:

The "DeepSum" framework is designed to provide efficient and informative video summarization specifically for animal behavior analysis. The detailed model architecture is as follows:

Input Layer: The model accepts raw video footage as input. The video is assumed to be pre-segmented into shorter clips based on activity or behavior.

1. Feature Extraction Layer:

• Frame Sampler: From each video segment, key frames are sampled based on heuristics such as motion or scene change.

• CNN Feature Extractor: A pre-trained Convolutional Neural Network ResNet is employed to extract feature vectors from each frame. This results in a set of high-dimensional vectors representing the visual content of the frames.

2. Temporal Embedding Layer: To maintain the temporal order of frames, positional encodings are added to the feature vectors. This ensures that the model is aware of the sequence in which frames appear.

3. Transformer Encoder Layer:

• Multi-Head Self Attention: The sequence of feature vectors is passed through a multi-head self-attention mechanism, allowing the model to focus on different parts of the video when generating the summary.

• Feedforward Neural Network: Each attention output is passed through a feedforward neural network, further transforming the feature representation.

• Layer Normalization and Residual Connections: Each sub-layer in the transformer encoder has a residual connection around it followed by layer normalization. This helps in training deep networks and maintaining feature integrity.

4. Hierarchical Attention Mechanism:

• Segment-Level Attention: An attention mechanism is applied within each video segment to highlight key frames that are crucial for understanding the animal behavior in that segment.
- Video-Level Attention: Another attention layer is applied across the segments, determining the importance of each segment in the context of the entire video.

5. Summary Generation Layer:
- Segment Selector: Based on the attention weights, important segments are selected to be part of the summary. This is done in a way that ensures diversity and coverage of different behaviors in the video.
- Frame Aggregator: The key frames from the selected segments are aggregated to form the final video summary.

6. Output Layer: The final output is a concise video summary highlighting key animal behaviors and interactions.

7. Loss Function and Optimization:
- Reinforcement Learning: A reinforcement learning approach is used to train the model, with a reward function designed to maximize the informativeness and representativeness of the generated summary.
- Optimizer: An optimization algorithm such as Adam is used to adjust the model weights based on the gradient of the loss function.

This architecture ensures that the "DeepSum" framework is capable of understanding the temporal dynamics of animal behavior, focusing on salient frames, and generating coherent and informative video summaries. The use of hierarchical attention mechanisms ensures that both local (within segments) and global (across the entire video) contexts are considered, leading to more meaningful summarization.

Input: Raw video footage of animal behavior (V)
Output: Summarized video highlighting key behaviors (S)

Step 1: - Preprocess Video
- Divide V into short, non-overlapping segments \{S_1, S_2, ..., S_n\}
- For each segment S_i, extract key frames \{F_1, F_2, ..., F_m\}

Step 2: - Feature Extraction:
- For each frame F_j in S_i, extract feature vector v_j using a pre-trained CNN ResNet
- Embed temporal information into each v_j to get embedded vectors \{e_1, e_2, ..., e_m\}

Step 3: - Temporal Dependency Modeling:
Pass the sequence of embedded vectors \{e_1, e_2, ..., e_m\} through a Transformer Encoder to capture temporal dependencies and get transformed features \{t_1, t_2, ..., t_m\}

Step 4: - Hierarchical Attention Mechanism:
- Apply Segment-Level Attention to focus on key frames within each S_i, resulting in weighted frames \{w_1, w_2, ..., w_m\}
- Apply Video-Level Attention across segments to weigh the importance of each S_i based on its content and context

Step 5: - Summary Generation:
- Select segments with the highest attention weights to form a set of candidate segments C
- From C, select a diverse set of segments that collectively cover a wide range of behaviors to form the summary S
- Optional: Apply post-processing to smooth transitions and enhance coherence

Step 6: - Evaluation and Fine-Tuning
- Evaluate S using both quantitative metrics and qualitative assessments from domain experts

Available online at: https://jazindia.com
• Based on feedback, fine-tune model parameters to optimize performance

Step 7: - Return Summary
• Output the final video summary S highlighting key animal behaviors.

3. Results and Discussion
The evaluation of the "DeepSum" framework was conducted using a diverse set of animal behavior videos. The results were quantified using various metrics and compared against existing state-of-the-art video summarization methods. Below is a tabular representation of the results:

<table>
<thead>
<tr>
<th>Models</th>
<th>F Score</th>
<th>Precision</th>
<th>Recall</th>
<th>Diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeepSum (Ours)</td>
<td>0.89</td>
<td>0.87</td>
<td>0.91</td>
<td>0.88</td>
</tr>
<tr>
<td>Video2Vec [21]</td>
<td>0.85</td>
<td>0.82</td>
<td>0.89</td>
<td>0.85</td>
</tr>
<tr>
<td>SumNet [22]</td>
<td>0.82</td>
<td>0.80</td>
<td>0.85</td>
<td>0.83</td>
</tr>
</tbody>
</table>

The performance of the "DeepSum" framework surpasses that of current leading models, as evidenced by its impressive results across various evaluation metrics. It excels in crafting detailed and pertinent video summaries, with a notable F-Score highlighting its adept balance between including essential behaviors and minimizing superfluous frames. "DeepSum" also stands out in terms of its diversity score, capturing a broader spectrum of animal behaviors within its summaries compared to other models. These outcomes underline "DeepSum"s exceptional capability in distilling animal behavior videos, marking it as a valuable asset for professionals in the field of zoology and associated disciplines. Its proficiency in generating summaries that are both succinct and rich in content can drastically boost the efficiency of behavioral studies, while also deepening our understanding of animal behavior patterns.

4. Conclusion
In summarizing, the research paper introduces "DeepSum," a pioneering framework designed to efficiently condense videos of animal behavior, thereby emerging as an invaluable asset for professionals in zoology and related research fields. By leveraging cutting-edge deep learning methodologies and a meticulously crafted model structure, "DeepSum" surpasses previous state-of-the-art video summarization techniques, generating summaries that are not only succinct but also rich in content. The comprehensive evaluations conducted across a variety of datasets underscore DeepSum's proficiency in distilling critical moments and behaviors from animal videos, all while ensuring a broad representation of behavioral diversity. This aspect is particularly vital for studies centered on animal behavior and conservation initiatives, as it enables a holistic understanding of the myriad of animal interactions and activities. The potential applications of video summarization in zoology, as exemplified by DeepSum, pave the way for substantial enhancements in research efficiency, the refinement of conservation strategies, and a more profound comprehension of animal behaviors. By automating the tedious task of video analysis and safeguarding against the omission of pivotal moments, DeepSum equips researchers with the ability to concentrate more on the analysis and practical application of their findings, thereby playing a pivotal role in the progression of zoological research and the preservation of wildlife. Looking ahead, there is ample room for the further optimization of the DeepSum framework, tailoring it to accommodate specific animal behaviors or interactions, and exploring its potential applications across other domains of biological and ecological research. Additionally, the incorporation of supplementary data types, such as audio or sensor information, could be investigated to enrich the video summarization experience, offering a more comprehensive perspective on animal behaviors. In essence, the DeepSum framework serves as a compelling illustration of how deep learning can revolutionize the analysis and interpretation of animal behavior videos, signifying a major advancement in the application of artificial intelligence within the realms of zoology and wildlife research.

References:

Available online at: https://jazindia.com

